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1. Introduction 

Proteus mirabilis belongs to the family 

Enterobacteriaceae and is capable of transforming in 

shape from rod to elongated and swarming motility by 

flagella. It is an opportunity bacteria and can cause 

different clinical diseases, including urinary tract 

infection, wound infection, meningitis in infants, 

rheumatoid, endocarditis, septicemia, and cystic 

fibrosis. This broad infection caused by Proteus 

mirabilis is produced due to the fact that it contains 

many virulence factors, including adhesion, toxins, 

flagella, enzyme production like urase, biofilm and 

highly resistant phenotype to antibiotics. The regulation 

of these virulence factor gene expressions is 

coordinated by signals in a phenomenon called quorum 

sensing (1-3). 

In urinary tract infections, biofilm production leads to 

long-period infection (4-6). 

The Proteus mirabilis genome contains different 

genes that encode proteins responsible for antibiotic 

resistance and develop multidrug and extensive 

resistance strains (7). These genes may be mobile genes 

located on chromosomes or plasmids called integrons 

(IntI1, IntI2) as well as other genes as included in this 
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Abstract 

Proteus mirabilis belongs to the family Enterobacteriaceae and is capable of transforming in shape from rod to 

elongated and swarming motility by flagella. It is an opportunity for bacteria and can cause different clinical 

diseases. Therefore, this study aimed to assay and detect a sequence of genes that encode for antibiotic 

resistance in multidrug resistance clinical isolates of Proteus mirabilis, including blaTEM, aac(6’)-Ib, qnrA, 

IntI2, IntI1 and secondly to investigate the relationship in the phylogenetic tree among these genes in Iraq 

comparison with global strains in NCBI. The study included the identifying of 500 clinical samples depending 

on morphological and biochemical tests and confirming Proteus mirabilis diagnosis by the VITEK-2 Compact 

system. The confirmed isolates of Proteus mirabilis were 95 clinical isolates (19%). Antibiotic susceptibility 

test of all these isolates was done using twelve antibiotics tested using Amoxicillin, Aztreonam, Imipenem, 

Cefoxitin, Amikacin, Ceftazidem, Ciprofloxacin, Nalidixic acid, Gentamicin, Sulphamethazol-trimethoprim, 

Cefotaxime, Amoxicillin-clavulanic acid. The results showed that multidrug resistance Proteus mirabilis 

isolates contained the genes in different levels as follow blaTEM gene (90%), aac(6’)-Ib  gene (80%) ,IntI1 

gene (100%), IntI2 gene (80%). These genes were sequenced and detected phylogenetic relationships among 

these genes and global genes were documented in NCBI. The results showed that some Iraqi isolates contain 

genetic variation compared to global strains. Therefore, this variation was detected and registered in NCBI of all 

five antibiotic resistance genes mentioned above and accepted under accession numbers of aacIb gene 

(LC613168.1), blaTEM gene (LC613166.1), IntI1 gene (LC613169.1), IntI2 gene (LC613170.1).  
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study that leads to transfer antibiotic resistance 

horizontally among strains of these bacteria and able 

Proteus mirabilis to resist different groups of antibiotic 

(beta-lactam, quinolones, chloramphenicol, 

trimethoprim, aminoglycoside, rifampicin) in 

nosocomial infection that attract the attention of world 

health organization and put this multidrug resistance 

pathogen in a group of microorganisms that medically 

significant nosocomial and community-acquired 

pathogen (8, 9). So, this study was carried out to assay 

and detect a sequence of genes that encode for 

antibiotic resistance included (blaTEM, aac(6’)-Ib, 

IntI2, IntI1), which considers resistance genes and 

include a mobile genetic element in multidrug 

resistance P. mirabilis in clinical samples and study of 

the relationship in the phylogenetic tree among these 

genes that responsible for the resistance of antibiotics. 

2. Materials and Methods 

2.1. Isolation and Identification of Proteus mirabilis 

The study collected 500 clinical infections from urine, 

wound, burn and otitis. All these samples were 

distributed among six governorates in Iraq, including 

Baghdad, Babylon, Al-Anbar, Al- Muthanna, Wasit, 

and Diyala, from October 2020 to January 2021. 

Identification of these samples depended on 

morphological and biochemical tests through 

appearance swarming, non-lactose fermentation on 

selective and differentialMacConkey and enriched 

condition on blood agar to another step that included 

confirmation of Proteus mirabilis diagnosis  

 

 

 

 

 

 

 

 

 

by VITEK-2 Compact system (Biomerieuxm France). 

The confirmed isolates of Proteus mirabilis were 95 

clinical isolates. 

2.2. Antibiotic Susceptibility Test 

All Proteus mirabilis isolates were tested by 

using"Amoxicillin 10µg/ml, Aztreonam 30µg/ml, 

Imipenem 10µg/ml, Cefoxitin 30µg/ml, 

Amikacin30µg/ml, Ceftazidem 30µg/ml, Ciprofloxacin 

5µg/ml, Nalidixic acid 30µg/ml, Gentamicin 10µg/ml, 

Sulphamethazol-trimethoprim 25µg/ml, Cefotaxim 

30µg/ml, Amoxicillin-clavulanic acid 20/10 µg/ml". 

Then isolates were considered resistant or sensitive 

depending on the previously published regulation (10). 

2.3. Molecular Study of Target Genes 

2.3.1. Multidrug Resistance Proteus mirabilis 

Ten more resistant isolates of Proteus mirabilis PM1, 

PM2, PM3, PM4, PM5, PM6, PM7, PM8, PM9, and 

PM10 were selected and used for genomic DNA 

extraction according to manufacturer protocol (Geneaid 

Extraction Promega, USA). The extracted DNA was 

concentrated at 27 ng/µl. 

2.3.2. Primers Used in This Study 

Specific primers for the detection of genes 

responsible for the resistance of antibiotics, as shown 

below in table 1, were used. 

2.4. Sequencing of Resistance Genes 

PCR products of resistance genes (aacIb, qnrA, 

blaTEM, IntI1, IntI2) were electrophoresis on gel 

against 100 bp marker of DNA ladder. Then, nucleotide 

sequencing of these genes and selecting some 

important sequences of genes are registered in NCBI.  

 

 

 

 

 

 

 

 

 

 

Table 1. Primers used in amplification target genes in this study 

 

Primer Name Seq. 
Annealing 

Temp. (°C) 
Product Size (bp) 

aacIb-F 5`-TTGCGATGCTCTATGAGTGGCTA-3` 
54 482 (11) 

aacIb-R 5`-CTCGAATGCCTGGCGTGTTT-3 

blaTEM-F 5`-TACGATACGGGAGGGCTTAC-3 
52 716 (12) 

blaTEM-R 5`-TTCCTGTTTTTGCTCACCCA-3 

IntI1-F 5`-CAGTGGACATAAGCCTGTTC-3 
59 160 (13) 

IntI1-R 5`-CCCGAGGCATAGACTGTA-3 

IntI2-F 5`-CACGCATATGCGACAAAAAGGT-3 
55 788 (13) 

IntI2-R 5`-GTAGCAAACGAGTGACGAAATG-3 
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3. Results 

3.1. Identification of Proteus mirabilis in Clinical 

Samples 

Standard methods and biochemical tests tested all 500 

clinical samples, and then identification was confirmed 

by VITEK-2 Compact System. The results showed that 

95 isolates (19%) belong to Proteus mirabilis from 

different regions in Iraq (Table 2).  

3.2. Antibiotic Resistance Pattern  

Ninety-five Proteus mirabilis isolates were 

examined to detect multidrug and extensive drug- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resistant against twelve antibiotics, including 

amoxicillin, Aztreonam, Imipenem, Cefoxitin, 

Amikacin, Ceftazidem, Ciprofloxacin, Nalidixic acid, 

Gentamicin, Sulphamethazol-trimethoprim, 

Cefotaxim, and Amoxicillin-clavulanic acid. The 

results of antibiotics resistance exhibited the ability of 

Proteus mirabilis to resist antibiotics at different 

levels, as shown in table 3, then 10 more resistant 

isolates were selected (Table 4) for molecular study. 

The results of the antibiotic resistance pattern are 

shown in table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Percentage of infection with P. mirabilis 

 

Type of Clinical Sample Number of isolates Percentage 

Infection of burn 21 22.1% 

ear swabs 22 23.25% 

Midstream urine 52 54.7% 

Total 95 100% 

 

Table 3. Pattern of resistance Proteus mirabilis against antibiotics 

 

Antimicrobial Agent 

Proteus mirabilis (95 isolates) 

Resistance Sensitive 

NO. % NO. % 

Amoxicillin (AMX) 10µg/ml 47 49.47% 48 50.5% 

Aztreonam (ATM) 30µg/ml 6 6.3% 89 93.68) 

Imipenem (IPM) 10µg/ml 0 0% 95 100% 

Cefoxitin (FOX) 30µg/ml 17 17.89% 78 82.1% 

Amikacin (AK)30µg/ml 10 10.5% 85 89.47% 

Ceftazidem (CAZ) 30µg/ml 29 30.5% 66 69.47% 

Ciprofloxain (CIP) 5µg/ml 8 8.4% 87 91.57% 

Nalidixic acid( NA) 30µg/ml 42 44.2% 52 54.73% 

Gentamicin (CN) 10µg/ml 24 25.26% 71 74.73% 

Sulphamethazol-trimethoprim (SXT) 25µg/ml 64 67.36% 31 32.63% 

Cefotaxim (CTX) 30µg/ml 42 44.2% 53 55.78% 

Amoxicillin-clavulanic acid (AUG) 20/10 µg/ml 45 47.36 50 52.63 

 

Table 4. Multidrug resistance Proteus mirabilis clinical isolates 

 

No. of 

isolate 

Antimicrobial Agent 

AMX 

10µg/ml 

ATM 

30µg/ml 

IPM 

10µg/ml 

FOX 

30µg/ml 

AK 

30µg/ml 

CAZ 

30µg/ml 

CIP 

5µg/ml 

NA 

30µg/ml 

CN 

10µg/ml 

SXT 

25µg/ml 

CTX 

30µg/ml 

AUG 20/10 

µg/ml 

PM 1 R R S R S R S R R R R R 

PM 2 R R S R R R R R S R R R 

PM 3 R S S S S R S R R R R R 

PM 4 R R S R R R R R R R R R 

PM 5 R S S S S R R R S R R R 

PM 6 R R S R S R S R R R R R 

PM 7 R S S R R R S R R R R R 

PM 8 R R S R R R R R S S R R 

PM 9 R S S S S R R R R R R R 

PM 10 R S S S S R R R S R R R 

R = resistant                  S = Sensitive 
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3.3. DNA Extraction from Multidrug Resistance 

Proteus mirabilis 

The 10 multidrug-resistant isolates of Proteus mirabilis 

tabulated in table 4 were used for more molecular 

investigation. The results showed all  

ten multidrug resistance Proteus mirabilis contain these 

genes in different levels blaTEM gene (90%), aac(6’)-

Ib gene (80%), IntI1 gene (100%), IntI2 gene (80%) as  

shown in figures (1, 2, 3 and 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Sequence of MDR P. mirabilis genes 

The sequencing of multidrug resistance Proteus 

mirabilis (32 isolates) containing genes 

includingaacIb, blaTEM, IntI1, and IntI2  were 

sent for Sanger sequencing to Macrogen 

Corporation – Korea. Geneious software 

analyzed the results to detect a mismatch with P. 

mirabilis in NCBI, as shown in figures 5, 6, 7 

and 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. aac(6)-lb (482bp) resistant P. mirabilis comparison 

with stander marker (1500 bp) 

 

Figure 2. blaTEM (716 bp) in resistant P. mirabilis 

comparison with stander marker (1500 bp) 

 

Figure 3. IntI-1(160 bp) in resistant P. mirabilis comparison 

with stander marker (1500 bp) 

 

Figure 4. IntI-2 (788bp) in resistant P. mirabilis comparison 

with stander marker (1500 bp) 
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Figure 5. Dendrogram of sequence aacIb in P. mirabilis (4, 6, 

7, 8) comparison with world Proteus mirabilis in NCBI 

(CP061834, CP061843, CP062793) 

 

Figure 6. Dendrogram of sequence TE Min P. mirabilis (2, 3, 

4, 5, 7, 8, 9, 10) comparison with world Proteus mirabilis in 

NCBI (MK861851, MN167852) 

 

Figure 7. Dendrogram of sequence IntI1 in P. mirabilis (1, 2, 

3, 4, 5, 6, 7, 8, 9, 10) comparison with world Proteus mirabilis 

in NCBI (MN167852, MK847916, MK847915) 

 

Figure 8. Dendrogram of sequence IntI2 in P. mirabilis (2, 4, 

5, 6, 7, 8, 9, 10) comparison with world Proteus mirabilis in 

NCBI (MK670987, CP059056, CP063314) 
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Documentation of genes from Iraqi multidrug-

resistant clinical isolates of Proteus mirabilis carried 

out as new Iraqi strains. They selected five isolates of 

multidrug resistance Proteus mirabilis with specific 

sequences of nucleotides with genetic variation 

compared with world strain. The results showed an 

accepted sequence of five genes for five isolates in 

NCBI, including the following genes aacIb 

(LC613168.1), blaTEM (LC613166.1), IntI1 

(LC613169.1), IntI2 (LC613170.1). All mentioned 

strains in this research are named (Iraq 2-4-5-6). 

4. Discussion 

Proteus mirabilis became a prevalent opportunistic 

pathogen agent in clinical infection worldwide and is 

associated with UTI especially among patients with 

long-term indwelling catheters, burn infections, ear 

infections, and septicemia (14, 15). In Iraqi clinical 

isolates, infections with Proteus mirabilis were burned 

infection 21 (22.1%), ear infection 22 (23.25%), and 

urinary tract infection 52 (54.7%). The spreading of 

infection with these bacteria belongs to many virulence 

factors and a high ability to resist different antibiotics 

(16).  

Multidrug resistance ten Proteus mirabilis isolates 

have different levels of all resistance genes (blaTEM, 

aac(6’)-Ib, IntI2, IntI1). Genome of nine isolates of 

these bacteria contain blaTEM gene (90%), eight 

isolates contain aac(6’)-Ib  gene (80%) ,all isolates 

contain IntI1 gene (100%), eight isolates contain IntI2 

gene (80%) .These above genes make Proteus mirabilis 

isolates able to resist different groups of antibiotics 

likeβ-lactam, aminoglycoside, and quinolones, as 

shown in table 4. Analysis sequencing of the above 

target genes may be referred to as these genes' 

horizontal transport among Proteus mirabilis 

subspecies because it is located in some groups in a 

phylogenetic tree.  

Also, the phylogenetic tree exhibited sequences of 

genes variable comparison with global strain in NCBI 

of the same bacteria locally. The selected five Iraqi 

strains were to interpret the origin of this genetic 

variation that may occur due to mutation or integrons 

(17, 18) and accepted as Iraqi strains in 

NCBIincludedaacIb (LC613168.1), blaTEM 

(LC613166.1), IntI1 (LC613169.1), IntI2 

(LC613170.1). 

Proteus mirabilis produces extended-spectrum β-

lactamase enzyme developed as a result of a mutation 

that occurs in β-lactamase like (TEM-1, CTX-M, SHV-

1), and this mutation may be point mutation leading to 

a change in type and sequence amino acid in protein 

peptide. These enzymes consider primary causal agents 

that lead to increased resistance against the β-lactam 

group, especially cephalosporins antibiotics that 

include (cefotaxime, ceftazidime), and aztreonam (19, 

20). All that spreading of multidrug resistance in these 

bacteria in the clinical environment is due to the 

random use of antibiotics (21, 22).  

The ability of Proteus mirabilis to resist quinolones 

may occur because chromosomal mutation affects gyr 

A, topoisomerase genes and plasmid genes like qnr 

genes (23, 24). These genes encode proteins that act on 

the target site to quinolones and cause the inhibition 

effect of this group of antibiotics, especially 

norfloxacin and ciprofloxacin (11, 25-27). 

The aminoglycoside group is significant in treatment 

because it includes a broad spectrum of antibiotics (28, 

29). The isolates Proteus mirabilis contain aac(6’)-Ib 

gene that encodes to an aminoglycoside-modifying 

enzyme that acts inhibition effect against antibiotics in 

this group like amikacin and gentamycin, then isolates 

of these pathogenic bacteria become resistant against 

antibiotic of aminoglycoside group (30-32). 

The genome of Proteus mirabilis contains mobile 

genetic elements like integrons, including IntI1 

andIntI1 genes. These integrons contain three regions, a 

gene encoding to production integrase enzyme, the 

primary site for the recombination stage, and a 

promotor regulating the transcription process of 

captured genes that encode proteins, making these 

bacterial isolates able to resist antibiotics (33-35). 

Analysis of the phylogenetic tree showed genetic 

variation between Iraqi clinical Proteus mirabilis and 
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global, documented in NCBI. Genetic variation in the 

sequence of aacIb gene from Iraq – 4 infection UTI 

documented clinically data NCBI (LC613168.1). 

Sequencing of the blaTEM gene refers to found genetic 

variation in Iraq 2 strain that was isolated from 

midstream urine and accepted in NCBI (LC613166.1). 

The nucleotides of the IntI1 gene detected in Iraq 5 

strain isolated from burn infection and registered in 

NCBI (LC613169.1). The difference between Iraqi and 

global sequencing inIntI2 was achieved in Iraq 6strain, 

isolated from midstream urine, and then documented in 

NCBI (LC613170.1). Found a high degree of similarity 

in the sequence of antibiotic resistance genes (blaTEM, 

aac(6’)-Ib, IntI2, IntI1) from locally clinical isolates 

Proteus mirabilis may be referred to horizontal 

transport of these genes among species of these 

pathogenic bacteria.  
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