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Abstract 

Unregulated livestock movements pose a significant risk for the spread of diseases, which threaten their health and 

productivity, and has been cited as a potential driver of its spatial and temporal dynamics in the country. Formal 

evaluation of PPR spread linked to livestock migration is lacking. This study investigated the extent to which PPR 

spread can be attributed to livestock movement while accounting for risk factors such as production system, livestock 

population, geographical location and season. Data on livestock movement from Tanzania were collected to create 



 

 

network patterns that show the risk of PPR circulation across geographical areas and agroecological systems.  Results 

demonstrate a notable variation in network structure. Compared to movement related to seasonality variation, trade-

related movement reached 600km. Either, in the dry season, animals travel long distances compared to the wet season. 
The probability of contracting PPR infection was found to be half that of households with outgoing livestock 

(outdegree), indicating a lower risk of infection compared to households with more incoming livestock (indegree). 

Network pattern shows scale-free properties, negative and close to zero assortative mixing in Pastoral and agropastoral 

societies, respectively. From these findings it can be concluded that pastoral communities in northern Tanzania are 

prone to PPR infections, suggesting control methods targeting high-potential households in pastoral communities and 

districts with high livestock populations. The study suggests targeting the pastoral production system in these areas to 

impede PPR spread. Future research should focus on dynamic modeling and targeted control interventions. 

 

Keywords: Pastoral, Agropastoral, livestock movement, scale-free property, network analysis, Peste des Petits 

Ruminants, short cycle stock 



 

 

Introduction 

The movement of livestock is crucial to the livestock trade, search for pasture and water, or 

relocation, yet it carries the danger of disease transmission. For example, in 1920 saw the return 

of rinderpest to Europe from Brazil, the disease, which was officially declared eradicated in 2011 

(1,2). Improved livestock trade infrastructure like roads and railway networks and slaughter 

facilities show evidence of increased PPR risks. For example, in Asia and Africa , livestock 

movement in meat supply chain networks (herds-local small and big market central market) has 

been linked to the PPR outbreak (3,4).This is also true for Tanzania, where PPR spread throughout 

the northern part of Tanzania, where there is good trade-related infrastructure. International 

livestock market dynamics were linked to PPR spread, where outbreaks have been very common 

in regions with a high number of border markets (5). The health and sustainability of agricultural 

and pastoral production systems have been directly impacted by the unprecedented rapid spread 

of infectious diseases like Peste des Petits Ruminants (PPR), which pose a significant economic 

risk (6,7) Research efforts to gain a better understanding of the movement patterns of sheep and 

goats in different environmental settings have been spurred by the realization that the movement 

of livestock plays a significant role in the transmission and spread of contagious diseases (8,9). 

For sustainable agriculture, animal welfare, and effective resource use, it is essential to 

comprehend and optimize livestock mobility within various production systems. Every system has 

benefits and drawbacks, and the decision is frequently influenced by elements like the 

environment, the resources that are accessible, and the intended output (10). 

1.1. Pastoral and Agropastoral 

Tanzania's economy is rapidly developing, with agriculture accounting for 24.27% of the 

GDP(11,12). Livestock is essential for food, traction, revenue, savings, and social status in 

agropastoral and pastoral communities. Figure 1 illustrates that over 80% of production is 

accounted for by agropastoral societies, which include crop farming and livestock raising, and 

14%   by pastoral systems. Specialized or emerging practices, such as smallholder dairy systems, 

urban and peri-urban livestock production, and other mixed farming systems, make up the 

remaining 2-6% of production (10,13). The habitats of these communities are constantly shifting 

due to several factors including climate change(14). Climate change and other factors have led to 

a shift in pastoral communities to Agropastoralism due to unpredictable weather patterns and 

insufficient resources (15). Traditional coping techniques, such as livestock movement, are being 

adapted to include resilient breeds like drought-tolerant and short-cycle animals (16). However, 

developing disease management strategies is challenging due to the dynamic and interconnected 

nature of agropastoral and pastoral systems (17). 

Figure 1: Agropastoral and Pastoral community distribution in selected disease surveillance 

zones 

1.2. Livestock movement analysis 

It is possible to comprehend risk and investigate potential pathogen spread by closely examining 

livestock contact patterns (8). Various network analysis techniques have been applied to 

understand the structure and dynamics of livestock movements and their relevance to disease 

spread. Because livestock commerce is complicated and dynamic, it can be analysed using 

complex network analysis, which can handle bidirectional interactions such as animal movement, 



 

 

trade, and contacts (18,19). Network analysis allows us to determine centrality metrics, assess a 

node's significance within the network, and look into how a disease spreads(12). Some key 

measures that have been used  include centrality, which identifies highly connected nodes or 

regions in the network, and community detection, which identifies groups of locations with strong 

internal connections(20). In addition, we can analyse the network structure to calculate the sizes 

of the epidemics and determine whether removing a node would allow for targeted surveillance or 

control (20–26). Risk-based interventions, directed towards high-risk nodes, have been shown to 

significantly reduce the explosiveness of acute infections that spread quickly, such as the PPR-

virus (PPRV) (21). Few studies have been conducted to understand the impacts of movement of 

livestock in East Africa by looking at animal transaction records and sales records in conjunction 

with questionnaire surveys (12,24). For example, networks of local livestock mixing at communal 

areas have been developed using movement data gathered through community participatory 

mapping (10). In addition, livestock contact around communal areas of aggregation in a typical 

East African agropastoral community that was also examined through the use of Global 

Positioning System (GPS) data loggers (8,27–29), which allows the description of contact rates 

and identify factors that drive movements and contacts among local village herds. The study 

findings suggest that strategic interventions can be developed that will reduce infection without 

limiting livestock mobility (which is critical for their survival), by focusing on high risks points 

and times (10). Another study found that targeted interventions are a practical and efficient means 

of controlling disease, and that animal migrations can affect the patterns of disease transmission 

in the surroundings of livestock (30). Although these studies described livestock movements in the 

context of disease spread, they mostly focused on cattle in a small region in Tanzania. To date, no 

study has explicitly examined the various social and economic factors that influence small 

ruminant movements and the implication on the spread of PPR in both pastoral and agropastoral 

communities. This is particularly important in northern Tanzania where there is a shift in livestock 

typology, where more households now keep higher numbers of sheep and goats as compared to 

cattle because the former adapts better to increasing environmental and climatic challenges(31). 

This may result in increased risk of small ruminant diseases outbreaks like PPR in both pastoral 

and agropastoral communities (29. In this study, a network of movement of small ruminants (i.e. 

sheep and goats) was used to describe: (1) the role of livestock mobility in the spread and 

transmission of PPR in sheep and goats; (2) identify important hotspots PPR surveillance; and (3) 

how best PPR can be controlled in both agropastoral and pastoral production systems in Tanzania. 

Overall, the study findings have potential to improve our knowledge of the movement patterns of 

small ruminants within livestock-keeping communities and their function in network-based 

interventions for the surveillance and control of livestock diseases. 

  



 

 

2. Methodology 

2.1. Study area  

A cross-sectional study was done in eight districts located in four surveillance zones of Tanzania, 

as described in the  

Sup. Table 12: Definition of node and network metrics.   

 

Sup. Material: 13 and Figure 2. Using a purposive sampling approach, risk factors for disease 

spread were considered in selecting the study area. Risk factors considered in this study include 

geographical location, husbandry system, animal population (32) and composition, species, 

season, vaccination, and source of the animal (33). Apart from risk factors, information from the 

Director of Veterinary Services (DVS) on the zones with recent outbreaks of PPR was considered 

during sample collection. Four  surveillance zones, namely the southern,  northern, lake, and 

central zones, were selected from seven surveillance zones established for animal disease control 

in Tanzania (5). 

Figure 2: Map of Tanzania showing study area districts within four animal disease 

surveillance zones 

2.2. Data collection 

Data were collected between August and October, 2021. A semi-structured questionnaire was 

created to investigate the link between sheep and goat movements and the PPR outbreaks in the 

study area using the Kobo Toolbox (34). The primary unit of analysis in this study was the 

household because every household in the study owned animals. A household is a group of people 

living in the same homestead or compound, sharing cooking facilities, and reporting to the same 

household head (35). 

2.3. Collection of Movement data 

In this study, we documented both local movements to resource areas or trade related mobility; for 

the former, we defined agistment as taking livestock to acquire fodder and water in different sites 

during the dry season and wet season in exchange for payment while permanent involve trade 

related movement. Both trade-related and non-trade-related movements of animals were observed 

and documented. Using any of the aforementioned movement kinds throughout the study period, 

respondents were asked to name any animal destination by common name. In order to acquire 

locational data where wards were permanently recognized as opposed to the villages, it was 

necessary to identify both villages and a ward. A portable GPS embedded in the smartphone was 

used to record location information for each household surveyed and village/ward mentioned. The 

destination coordinates were picked through internet search where the mentioned name of village 

or ward was searched through Tanzania Postal code directory website(36) and google maps(37). 

To ensure all the information are included 121 sites which were involved in the study were 



 

 

extrapolated to 155 nodes to produce 471 connections. The extrapolation was done to meet three 

reasons of movement which include selling/trade, wet season and dry season. 

2.4. Data Analysis 

2.4.1. Network building 

A movement network was constructed in our study using data on local movement resulting from 

resource seeking and trade-related mobility. Migration within a ward or district for specific 

purposes, like searching for pasture or water, can be classified as either dry or wet season 

migration. A third type of migration category was trade, in which animals moved between wards, 

districts, or market areas. (23).  In the network a household or ward was represented by a node, 

and the movement of livestock between households or wards was represented by an edge. 

Centrality and network metrics at node and network level were calculated separately for 

individual district and the whole network (38). Two centrality metrics were computed at the node 

level: in and out-degree and betweenness, which are the pathways between nodes. At the 

network level, we computed the density, clustering coefficient, and giant strongly and weakly 

connected components. (39,40). These centrality metrics were used in locating important nodes 

that are thought to be PPR transmission hotspots. In addition, we created a composite network of 

all the movements in order to comprehend the high-ranking household in terms of degree.  

Sup. Table 12 lists the definitions of node and network level metrics as well as their importance in 

the spread of disease. All analyses were performed in R Programming Language using Geosphere, 

igraph and ggplot packages (40,41). 

2.4.2. How the degree of distribution and fitting look like 

Although many writers claim that their studied networks have scale-free properties and a power-

law distribution degree distribution, but this is extremely rare (42,43). Since node degree ‘k’ 

follows ‘a’ power-law distribution k – α where α >1, we considered in this study that many real-

world networks are scale free. In order to manage complexity, the latter proposes that a small 

number of nodes handle the majority of connectivity. This is frequently connected to the 

hierarchical structure of real-world communication systems (42,44–46). This can have a 

substantial impact on the dynamics of disease at the population level and may indicate the presence 

of super-spreaders within the network (47,48). Maximum likelihood estimates (MLE) of the data 

for the given distribution are calculated by default by the Anderson-Darling test. The households 

data in the network were fitted with a power law distribution using the Anderson-Darling test in 

this study to determine the degree of data distribution.(23,49). Using the ad.test function from the 

ADGof Test package I performed the Anderson-Darling to test the data if they follow power-law 

distribution (50). A p-value (<0.05) from Anderson-Darling test results suggests that the data does 

not follow a power-law distribution, while a large p-value (>0.05) suggests that it does (49–51). 

 

2.4.3. Small-world properties of the network  



 

 

The "six degrees of separation" theory and other phenomena are explained by the small-world 

properties of networks, which strike a balance between local clustering and global connectivity 

and permit brief social connections between individuals on Earth (52). Through the computation 

of average path length and clustering coefficient and their comparison with a small world property 

model, the study assessed the small-world properties of a household network (23). Strong local 

connectivity is indicated by a high clustering coefficient, which is a feature of small-world 

networks (53). As mentioned in section 2.4.2 above small-world networks, the degree distribution 

typically resembles a power-law distribution (50). Furthermore, we generated random networks 

with the same number of nodes and links as actual networks by utilizing the Erdos-Renyl 

model.(54). We contrasted the generated networks' average path length and clustering coefficient 

with those of the real networks in order to find scale-free or small world characteristics.(55,56). 

 

2.4.4. Analysis of the cohesion and fidelity of the network 

The structural properties of the network and its overall connectedness were examined using 

interconnected sub-group analysis based on k-core decomposition. Every node in a subgroup 

known as a "k-core" is, on average, connected to at least k other nodes. The K-core decomposition 

method was used to identify the core and peripheral networks. Percolation analysis was used to 

determine the degree to which the network structure would be vulnerable to the targeted removal 

of household. In this study we investigated how the network structure would change if household 

were gradually removed one by one in descending order of a specific centrality value. These 

measurements of centrality -indegree, outdegree, betweenness, and eigenvector, were used for this 

study. The cohesiveness of the network supporting livestock movement was evaluated by 

computing the magnitude of the giant weakly connected component (GWCC) and the magnitude 

of the largest community visible in the residual networks at each removal phase. 

2.4.5. Measurement of distance covered due to seasonal and commercial reason  

Using the Geosphere, ggplot and igraph R packages, the geographic separation between the sender 

and recipient household/ward was calculated. Both the overall network data and the data for each 

individual district were measured. The distance covered in the whole network during wet and dry 

season were also measured using the R packages mentioned above. After being moved to Microsoft 

Excel, the data were further visualized. 

 

2.4.6. Integration of network characteristics with PPR seropositivity 

PPR is a highly contagious disease where infection of one animal means contamination of the 

whole flock. Household were classified as positive or negative to PPR based serological test using 

HPPR blocking ELISA (HPPR-b-ELISA) produced from AU-PANVAC Addis Ababa, Ethiopia. 

The assay is based on monoclonal antibodies against PPR virus hemagglutinin protein (H). HPPR-

b-ELISA was used to detect antibodies from serum specimens according to the kit manufacturer's 

protocol (57). However, the test's ability to distinguish between animals that have not received 

vaccinations and those that have disease is limited. Regression modelling technique was used to 

explore the association between network characteristics and PPR seropositivity. For example, fit 

logistic regression models with PPR seropositivity as the outcome variable and network metrics 



 

 

as predictors, adjusting for covariates such as production system, geographical location, and 

season. PageRank is an algorithm used to measure the importance of nodes(household/ward) in a 

network and assigns a score to each node (household/ward) based on the number and quality of 

links connected to it, hence, due to its conceptualisation, it detects influential household/wards 

across the whole network. Household or wards with a higher PageRank were considered more 

central or influential in the network (58,59) Spearman correlation (Spearman’s ρ) was computed 

by ranking the values of each household and ward and then calculating the correlation between 

their ranks (60). Relationship between household level risk and network characteristics as well as 

the correlation coefficient were determined by lm() function and igraph  fitted R-package(61).  

  



 

 

3. Results  

3.1. Descriptive statistics of the network 

Table 1 displays the results of centrality measures at node and network levels which are also 

displayed in Sup. Table 9 and Sup. Table 10 separately. The livestock movement network topology 

for the full network is presented in Sup. Figure 8. Average degree of 6.077419 showing among 

household had at least six connections with any other households. According to the degree 

centrality, each household was found to have a median link of 1 (range: 1 to 18) with other 

households. The median outdegree centrality for every node in the entire network was also found 

to be 1, whereas the median indegree was found to be 0 meaning that few house hold have high 

number of incoming connections compared to outgoing connections. Greater household centrality 

as a result of closeness was seen throughout the entire network, meaning that it takes an average 

of just 1 step to access every other household from a particular household within the network. 

Higher reach_2 centrality nodes (>0.41) which means are significant in disease dissemination were 

detected in Hanang and Masasi districts showing the potential of PPR outbreaks within those 

districts Sup. Table 9. At the district level betweenness centrality measure for both districts were 

lower compared eigenvector centrality which takes into account the centrality of a node's 

neighbors. Nodes connected to other central nodes will have higher eigenvector centrality. High 

eigenvector centrality value (0.58) was detected in Simanjiro and Kiteto district meaning that those 

districts have PPR transmission potential. In comparison to subnetworks exclusive to the study 

districts, it was found that the probability of a well-connected household in the entire network  

Table 1 present the findings of the livestock movement network analysis based on chosen node 

parameters in Table 1 network parameters. With only 1% of all potential links present, the entire 

livestock movement network showed a lower density of connections, indicating a very low level 

of network cohesiveness and highlighting the local and regional nature of livestock movement in 

Tanzania. District representing Pastoral societies according to the literature were Longido, 

Simanjiro, Kiteto and some wards of Hanang other districts were dominated by Agropastoral 

societies. Assortativity measurements which offer a quantitative way to understand how 

households in a network preferentially connect based on production system. According to Table 

1 and  

Sup. Table 10 assortativity based on degree close to negative was picked in those districts as was 

for the full network while all agropastoral society did have assortativity close to zero >0.004. 

Household in Agropastoral society were reachable compared to pastoral society as seen in Reach_2 

and Reach_3 value (median >0.29) in Pastoral societies compared to agropastoral societies <0.29. 

According to the network diameter, there was a minimum of one step needed to connect the two 

most distant reachable households in the network. Degree centrality-based network centralization 

showed that the Masasi sub-network was more centralized although the overall network showed 

more of decentralized tendency. The district and overall livestock movement network's global 

clustering coefficient, which is the average of each household's local clustering coefficient, was 



 

 

zero (Table 1). A household may only need to take a few steps to connect with another household 

in the network because the average shortest path length for the entire and district networks was 1. 

Modularity which depends on network cohesion and network fragmentation was picked in both 

district level and full network at the range (0.6 to 0.76) and 0.9367 respectively. Network analysis 

base on justification for livestock movement as in Table 1 show that edge density was higher in 

trade related movement compared to season(wet/dry) related movement. Modularity and 

centralization by degree was constant throughout all the reasons. Assortativity close to negative (-

0.1152909) was picked in dry season compared assortativity close to zero (0.002818196) was 

picked in wet season.  

Table 1: The Network metrics parameters at node and Network level with network 

parameter determined uniquely for every purpose (Selling, Dry, Wet) 

 

3.2. The appearance of the degree of distribution and fitting 

The centrality degree of distribution shown in Figure 3 display high number of nodes with little 

connections while only few nodes which have many connections. This demonstrates that the 

network of livestock movement was not distributed normally. The data was left-skewed, 

suggesting that a relatively small percentage of households were highly connected in comparison 

to the majority of households. The distribution has been well described by a power-law distribution 

where after fitting the power law distribution with Anderson darling test it produces a p-value of 

0.957 which is greater than 0.05 which means that the data are plausible. 

 

Figure 3: The distribution of key centrality measures according to the number of 

nodes(households) 

3.3. Small-world properties of the network and overall connectivity 

The values of the clustering coefficient and average shortest path length were compared with those 

of the random network to determine whether the entire network showed a small world 

structure.(38,54). As in Table 2 the value was simulated at 156 as the number of vertices (nodes) 

in the graph and 0.3 as the probability of an edge existing between any pair of vertices. In light of 

this, the random network demonstrated a higher clustering coefficient of 0.3 and an average 

shortest path length of 1.7, indicating that the established livestock movement network was less 

clustered but still capable of reaching a large number of households easily. This suggested that the 

real network exhibited a small world structure. 

Table 2: Properties examined using Erdos-Renyl to verify compliance of real-world 

networks 

 

3.4. Cohesive analysis and Network reliability 



 

 

The Livestock movement network was organized in 9 core sub-groups as in  

 

. One node was present in each of the three GWCCs among the network's participating 

households. It should be noted, though, that the network lacks a GSCCs. The livestock 

movement network's modularity, which was estimated to be 0.9367(Table 1), was used to assess 

the quality of the community structure. This indicates that there is a greater tendency for 

intracommunity connections than there would be if the connections were rewired under random 

network conditions. Within the connected network, 32 communities were found using a cluster 

walk trap algorithm for community detection (Sup. Figure 8). There were 18 households in the 

largest community, compared to just 2 in the smallest. Of the total number of households in the 

network, 3 of the largest communities had 41 households, making up 30% of the total. The 

remaining 70% of the communities had two to eight households each. In most cases, community 

distributions were contained to the study sites, although some communities did cross into 

neighboring districts. It was found that communities involving these households crossed over 

because fewer of the households in the Masasi districts (Mchauru, Sululu) had ties to the 

households in Bahi (Chiungutwa). A few other smaller communities in Meatu (Mwamalole) and 

Hanang (Dawari, Balagda Wards) were also seen to cross one another, despite the absence of any 

connected households in between as in Sup. Figure 8. A percolation analysis was carried out to 

assess the vulnerability of the cohesion of the network structure as measured by the size of 

GWCC and largest community. Figure 4 and  

Sup. Figure 7 compare the impact of selective removal of households according to their 

centrality measures to random selection. Targeted removal of households in the network based 

on decreasing order of the betweenness, indegree, outdegree, closeness and eigenvector values 

showed remarkably faster changes in the network structure with faster reduction on the size of 

GWCC compared to random removal  

Sup. Figure 7. Based on the fragmentation of the GWCC( Table 3) our study has shown that if we 

target the top 5% of highly connected households based on their degree centrality value, the 

cohesiveness of the network would be reduced by nearly 62%. Additionally, if we increase the 

target to 10% of the connected households, the cohesiveness would be further reduced by more 

than 83%. Household removal using betweenness centrality did not disintegrate the network 

structure. The largest community size in the network dropped promptly when households were 

removed based on the value of their eigenvector centrality followed by closeness centrality then 

out-degree and then indegree which shows slow disintegration (Figure 4). 

 

 

Figure 4: Centrality measure changes during household(node) removal 

 



 

 

Table 3: Fragmentation of the GWCC 

 

 

 

Figure 5: Graph network on a Map of Tanzania showing livestock movement across different 

districts 

3.5. Distance covered due to seasonal and commercial reason 

The geographic distance between the sender and receiver household/ward as shown in B  for all 

movement was between 0.0km and 617.59 km at both full network and district level. At full 

network level during dry season livestock movement was detected in several household with 

average of 10.62km. The maximum distance covered by movement of livestock as the result of 

selling was 617.6 km. Mean distance covered for commercial and seasonal purposes (dry and wet) 

in km were 10.62, 2.764 and 33.04 respectively. Seasonal livestock movement covered maximum 

distance of up to 258.16 km and 60.984 during wet and dry season, respectively.  At district level 

there was zero livestock movement during dry and wet season in Bahi and Masasi while Hanang 

has zero livestock movement only in wet season. Livestock movement for commercial purposes 

was covered in all the districts but distance of >100km was covered in Longido (151.3km), 

Bahi(391.1km) and Meatu (617.6km)  

B  and Figure 6. 

A 

B Figure 6:The livestock movements distances covered A: seasonal and commercial reasons 

B: Overall livestock movement in the study districts 

 

3.6. Important Network characteristics which show PPR Transmission Dynamics and 

Control  

Through determination of the degree of correlation between PPR status and network 

characteristics as predictor variables the study has been able to find important PPR hot spots for 

surveillance and management (Table 4). Hub odds ratio of 0.01suggests that households 

identified as hubs (i.e., highly connected nodes within the network) have higher odds of PPR 

seropositivity compared to non-hub households. The degree odds ratio of 0.97 suggests that for 

every unit increase in the degree centrality of a household the odds of PPR seropositivity 

decrease by 3%. Conversely, households with one or more outgoing animals (outdegree ≥1) had 

a 52 percent lower likelihood of PPR seropositivity (adjusted OR = 0.48) compared to 

households that maintained their animals (indegree = 1.01). Households with higher closeness 

centrality values showed a 48% decrease in PPR seropositivity (adjusted OR 0.52) indicate a 

decrease in proximity to other households within the network. According to  



 

 

Sup. Table 11 Page rank centrality measure by ward shows that Mbuyuni Chiungutwa and Sululu 

ward found in Masasi district were influential wards as ranked higher by page rank scores showing 

their importance in PPR spread during outbreak. It was further revealed that the Page rank 

centralities measure in the entire network using the page rank scores positively correlated 

(Spearman correlation, ρ = 0.6764416). 

Table 4: Estimation of node characteristics by logistic regression model for household level 

PPR Risk 

 

  



 

 

4. Discussion 

Livestock movements play a significant role in the spread of PPR by influencing the contact 

structure of livestock populations, which in turn affects the transmission of PPR in small ruminant 

(SR). By pinpointing the locations of PPR hot spots, network-based risk assessment can help to 

shape animal health policy. These places can then be targeted to lessen the burden of disease and 

the chance of PPR spreading. The movement networks of livestock in pastoral and agropastoral 

districts were described in this study using network analysis. According to our hypothesis, the wet 

season, dry season, and trade have an effect on the cohesiveness and structure of the network, 

which in turn affects the likelihood of PPR transmission and the efficacy of outbreak containment 

and response strategies. In this study, network structure showed a higher degree of variation in the 

number of connections per household, indicating the heterogeneity of links per household. The 

observed variation is partly due to production systems. As observed in all the districts, Kiteto1 

(0,1) and Simanjiro 1 (0,1) had higher concentrations of highly connected households, or "hubs," 

which could act as super spreaders of PPR once infected. Lower outdegree is typically found in 

households with higher indegrees, indicating a lack of households that are both more likely to 

contract an infection and spread it to others, which is crucial in promoting PPR transmission 

throughout the network (9). Eigenvector values have been used to identify super spreaders, in 

which Kiteto and Simanjiro with high eigenvector values can be considered PPR hot spots (62). 

While some risk factors show associations with PPR seropositivity, such as outward livestock 

movement due to a high tendency to sell animals as a result of extended dry season and other social 

and economic factors, none of the associations are statistically significant at the conventional 

significance level (p < 0.05). This indicates that the observed relationships may be due to random 

variation or confounding factors, highlighting the need for further investigation and larger sample 

sizes to draw definitive conclusions. 

Through PageRank scores, it was revealed that wards with higher scores, like Chiungutwa, 

Mbuyuni and Sululu, are influential in the event of PPR during outbreaks. These wards connect 

other wards, potentially serving as hubs for disease transmission. Positively correlated (Spearman 

correlation, ρ = 0.6764416) pagerank centralities measures emphasizes the importance of network 

centrality measures in predicting disease spread and identifying hotspots for targeted control and 

management strategies. A scale-free property is also suggested by the livestock movement 

network's right-skewed (Figure 3 indegree, eigenvector, outdegree distribution and power law fit. 

Fewer homes with many connections, the bulk of which act as hubs, are more likely to become 

infected with PPR, and once they do, they may become potential super spreaders to many other 

homes that are connected to them (9). Kiteto and Simanjiro districts identified as hubs can not only 

play a role as super spreaders but also as maintainers of PPR infection. Prior research on infectious 

disease epidemics on scale-free networks has shown that the presence of hubs accelerates the 

spread of epidemics (63–66).  

Livestock production system variation in the districts involved in the study area shows higher-

order relationships between households in the full network and in the districts level. Negative 

assortative mixing is seen in both full networks and districts with pastoral production systems, 



 

 

suggesting that households with higher levels of connectivity tend to interact with those with lower 

levels of connection. It was found that the latter relationship was more pronounced in pastoral 

societies, suggesting that PPR could spread quickly within those communities (21,67,68). Previous 

studies have demonstrated that frequent connections between households with high and low levels 

of connectivity can effectively inhibit the spread of infectious diseases in comparison to networks 

that exhibit positive assortative relationships, which is true for Bahi and Masasi (9). Identifying 

negative assortative relationships in networks as seen in the dry season (-0.1152909) can aid in 

PPR control by implementing control measures like movement restriction, culling, and increased 

biosecurity during the respective season (69).  

Livestock groups exhibit modular structure when subsets of conspecifics habitually engage in 

more interactions with one another than with other members of the group, hence creating 

subgroups. Reduced disease burden is caused by structural delay and the trapping of pathogens 

that propagate across social networks due to strong subgroup cohesion and fragmentation, both of 

which are linked to high modularity (70). Despite the network's weak cohesiveness, its high 

fragmentation structure has boosted its modularity at both the district and entire network levels. 

The scale of the epidemic impact may be greater on the tiny subgroups with strong cohesion seen 

in the Masasi district, which has been recognized as a hotbed of future PPR outbreaks. Subgroups 

with high modularity can be easily connected over long distances for a variety of reasons, which 

can result in PPR outbreaks. According to  

B  and Figure 6 very short distances were covered by animals during the wet season compared to 

the dry season. However, livestock was transported very far for trade purposes compared to 

seasonal purposes as a result of water and pasture searches. The higher distances covered in the 

dry season compared to the wet season increase due to variations in the heterogeneous contact rate 

between animals. Livestock movement rate is related to an increase in PPR risk, in which areas 

with a road/railway density of 5000 m/km2 have a higher risk of PPR spread (71). In the study area, 

vehicular livestock movement was mostly preferred compared to tracking, resulting in long 

distance movement, as shown in pastoral and agropastoral societies located in accessible areas 

(72). The risk of PPR spreading to a wide area, including neighboring countries, increases with the 

increase in vehicular movement (69). Previous research that demonstrated the significance of 

animal movement in the transmission of infectious diseases supports this observation (9,73). Long-

distance livestock travel is a major contributor to the nationwide PPR epidemic, making it difficult 

to control. Therefore, finding an ideal way to quickly split up a network into isolated components 

at the lowest feasible cost is crucial and fascinating for managing the spread of PPR (73,74). One 

useful tactic to identify households that are crucial to the spread of disease is to remove specific 

households from the livestock movement network in order to break up the cohesiveness of the 

network. Then, you can implement disease control measures like movement restrictions and 

vaccinations (9,24,38,75). Based on the fragmentation of the GWCC (Table 3) this study has 

shown that if we target the top 5% of highly connected households based on their degree centrality 

value, the cohesiveness of the network would be reduced by nearly 62%. Additionally, if we 



 

 

increase the target to 10% of the connected households, the cohesiveness would be further reduced 

by more than 83%. Though at a slower rate than the effect on GWCC, a measure of network 

resilience, targeted removal based on the degree centrality value also demonstrated a positive effect 

on the fragmentation of the largest community. The relatively rapid fragmentation of the 

cohesiveness of the network implies that there may be a limit to the rate at which PPR spreads 

among household networks. The removal of households by fragmentation indicates that targeted 

interventions may be an option for disease control. However, because PPR is infectious, it may be 

easier to attain effectiveness and detect the intervention's impact in a shorter period of time than 

chronic infections. Thus, control efficacy can be improved by implementing good biosecurity 

measures and restricting livestock movement from PPR-endemic areas. These findings could 

inform policymakers and veterinary authorities about the need to implement more effective 

surveillance and intervention measures to mitigate the spread of PPR in small ruminant 

populations. 

 

Conclusion 

While this study provides valuable insights into the spread and transmission of PPR among small 

ruminants, several limitations must be acknowledged. The use of static, non-weighted networks 

simplifies analysis but does not account for the temporal nature of livestock movements or 

variations in link weights, such as the quantity of livestock, which could influence outcomes. 

Furthermore, the study considered all livestock species rather than focusing solely on small 

ruminants, the primary hosts of PPR, potentially affecting the precision of findings. Limitations in 

smartphone GPS data accuracy, influenced by signal interference and device variability, may have 

introduced data inconsistencies. Despite these limitations, the findings identified pastoral districts 

as hotspots for PPR transmission and emphasized the need for targeted control measures, 

particularly in southern Tanzania, where dynamic livestock mobility driven by climate change and 

other factors heightens disease spread risk. Future research should integrate temporal network 

modeling and evaluate focused control interventions, accounting for production systems, 

transmission pathways, seasonal variations, and contact rates, to construct dynamic models for 

PPR and other small ruminant diseases. 
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Tables 

Table 5: The Network metrics parameters at node and Network level with network 

parameter determined uniquely for every purpose (Selling, Dry, Wet) 

Node level Parameters Network level Parameters 

Parameter Values Parameter Values 

Degree 1(1,18) Diameter 1 

Indegree 0(0,18) 
Average shortest 

path length 

1 

Outdegree 1(0,2) Edge Density 0.01 

Closeness 1(0.5,1.0) Reciprocity 0 

Reach_2 
 

0.03(0.013,0.15) 

Assortativity (based 

on degree) 

-0.04317455 

Reach_3 0.03(0.01,0.22) 
Global clustering 

coefficient (CC) 

0 

Eigenvector value 0(0,1) Modularity 0.9367 

Hubs 0(0,1) 
Giant Components 

(GC) 

4 

Authority 0(0,1) 
Centralization (by 

degree) 

0.1524662 

    

Parameter Metrics values uniquely for every purpose  

Dry Wet Selling 

Diameter 1 1 1 

Average shortest path length 1 1 1 

Edge Density 0.005593663 0.005684109 0.007880124 

Reciprocity 0 0 0 

Assortativity (based on degree) -0.1152909 0.002818196 0.007293846 

Global clustering coefficient 

(CC) 

0 0 0 

Modularity 0.952315 0.9515618 0.9597036 

Components (GC) 18 19 18 

Centralization (by degree) 0.04920694 0.05196965 0.05013149 



 

 

Table 6: Properties examined using Erdos-Renyl to verify compliance of real-world 

networks 

Properties Actual  Simulation 

Total number of households (Nodes) 155 155 

Size of GSC  0 13 

Size of GWC  27 13 

Average path length 1 1.7 

Clustering coefficient 0 0.3 

 

  



 

 

Table 7: Fragmentation of the GWCC 

Parameters Values 

Fragmentation % 5% 10% 30% 

GWCC-Before Fragmentation 53 53 53 

GWCC-After Fragmentation 20 9 3 

Remaining nodes 33 44 50 

Remaining nodes (%) 62% 83% 94% 

 

  



 

 

Table 8: Estimation of node characteristics by logistic regression model for household level 

PPR Risk 

PPR-Risk factor OR 95% CI P-value 

Degree 0.97 0.73, 1.17 0.8 

Eigenevector 0  0.2 

Hub 0.01  0.2 

Authority 0  0.9 

Closeness 0.52 0.18, 1.52 0.2 

Reach_2 0 0.00, 0.00 0.001 

Reach_3 0 0.00, 0.00 0.001 

Inward livestock movement (Indegree) 1.01 0.82, 1.19 0.9 

Outward livestock (Outdegree) 0.48 0.19, 1.15 0.11 

 

  



 

 

6. Supplementary files 

Sup. Table 9: The authority, eigenvector, degree, and reach-2 and reach-3 metrics, which 

indicate how central the node is in the livestock movement network 

 

Sup. Table 10: Network metrics calculated for every district and network as a whole 

 

 

Sup. Table 11: Page rank score by ward 
  

 

Sup. Figure 7: Changes of centrality measures from random and targeted node removal A: 

showing the GWCC decreasing with other centrality measures B: showing metric changes 

between random and targeted node removal. 

 

Sup. Figure 8: A network graph that displays the network (A: communities B. Wards) and 

their connections 

 

 

Sup. Table 12: Definition of node and network metrics.   

 

Sup. Material: 13: Study area Description  

Tanzania, an East African country south of the equator, covers 945,087 km2, with 883,749 km2 

land and 59,050 km2 inland water bodies, including the Indian Ocean. (Chang’a et al. 2017).  

Tanzania's rainfall regimes are categorized as unimodal or bimodal, with bimodal rainfall 

occurring in northern regions and unimodal in Central, South, and Western districts. These 

distributions impact pasture, water availability, and animal migration. (Chang’a et al. 2017). 

Our study area covers five regions found in the southern (Mtwara), central (Dodoma), and northern 

(Manyara, Arusha) Lake Victoria basin (Simiyu) where sheep and goat populations are 

considerable high, except Mtwara (Tanzania National Bureau of Statistics and NBS 2017). Eight 

districts were chosen from the regions based on PPR risk factors, including climate change 

vulnerability. Sheep and goat populations, wildlife and livestock interactions, social economics, 

and international border proximity Longido, Meatu, and Bahi districts with unimodal rainfall 

patterns and low annual rainfall represent the areas with PPR risk due to continuous shortages of 

pasture and water. Meatu, Simanjiro, Kiteto, Hanang, and Longido have large populations of sheep 

and goats, increasing the risk of PPR through social and economic activities. Masasi, Bahi, and 

Bariadi reported the incidence of PPR during the study period. Meatu and Bariadi share the 

Serengeti ecosystem, with previous incidences of PPR within the regions and the country 

bordering the ecosystem. Simanjiro, Kiteto, and Longido districts have wildlife and forest 

protected areas where there is sharing of grazing land with wildlife. Longido and Masasi districts 

were in close proximity to the international borders of Kenya and Mozambique, respectively. 

Hanang, Kiteto, and Simanjiro districts are inhabited by agropastoral and pastoral groups that own 



 

 

agricultural areas, with some areas demarcated for grazing, as seen in Simanjiro and Kiteto 

districts. Hanang district, on the other hand, has limited grazing areas where seasonal cropping 

allows the use of agricultural areas for grazing during the dry season. The Simiyu region within 

the Lake Victoria ecosystem was represented by Meatu and Bariadi. The latter two districts are 

within the Serengeti National Park North ecosystem in the eastern part of lake victoria. Wildlife-

livestock interaction in the districts of Longido, Simanjiro, Kiteto, Bariadi, and Meatu is very 

common due to their proximity to wildlife and forest conservation areas. In those districts, various 

types of animals, including small ruminants, can be found grazing together with sheep and goats. 

During the dry season, poor water and pasture availability leads to increased animal interaction. In 

the Simiyu region, illegal activities in Serengeti National Park and Butuli Forest Conservation 

Area are very common, thus increasing PPR risks to the domestic small ruminant population. 

Livestock trade increases, involving up to 9 million sheep and goats annually. (Tanzania National 

Bureau of Statistics and NBS 2017). Most of the animals are transported by vehicles to the 

secondary markets located in the major cities of Mwanza, Dar es Salaam, and Arusha. Non-

vehicular transportation has been reported for short-distance travel toward or from primary 

markets. Long-distance travel has been reported during the pasture shortage, when animals have 

been moving from one district to another in search of water and greener pasture.  


