Probiotics under Selective Pressure: Novel Insights and Biosafety Challenge

Document Type : Review Article

Authors

1 Kazan Institute of Biochemistry and Biophysics of the Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russian Federation

2 Kazan Institute of Biochemistry and Biophysics, RAS

3 Kazan Federal University

10.32592/ARI.2024.79.6.1165

Abstract

The emergence of new high-resolution physic-chemical methods, the introduction of omics technologies into the practice of biomedical research have determined new opportunities for studying the mechanisms of bacterial survival in vitro and in vivo under the pressure of biotic and abiotic stressors, in axenic cultures, microbial communities, and holobionts. Innovative methodological platforms contributed to obtaining unique data relevant for both fundamental and applied science. Experimental results indicating a phenomenally high level of genomic plasticity of microorganisms and the potential for the evolution of bacterial virulence under conditions of selective pressure have made significant adjustments to our understanding of the arsenal of self-defense tools in bacteria and the prioritization of research. The growing pool of factual material today dictates the need to focus attention not only on pathogens, but also on widespread commensal bacteria, which have the status of probiotics, actively used in medicine, agriculture and the food industry. Reports of the possibility of large-scale genomic reorganization and progressive evolution of virulence in these bacteria under stressful conditions, means for modulation of host cell signaling systems and suppression of innate immunity, negative regulation of key cell cycle controllers, disruption of the structure of the intestinal microbiota and intestinal homeostasis reveal the obvious insufficiency of our knowledge about the "logic of life" of symbionts and the mechanisms of their interaction with eukaryotic cells, which may compromise the ideas of a number of practical applications. This determines the relevance of comprehensive studies of commensals, the potential of their plasticity in different environmental conditions as well as the ways of intercellular communication and interaction with regulatory networks of higher organisms, and dictates the need to develop a standardization for assessing the safety of probiotics.

Keywords

Main Subjects


  1. Al-Madhagi H, Alramo A. Clinical trials of probiotics: Current outlook. Food Sci Nutr. 2023;12(3):2192-2194.
  2. Gul S, Durante-Mangoni E. Unraveling the Puzzle: Health Benefits of Probiotics-A Comprehensive Review. J. Clin. Med. 2024;13(5):1436.
  3. Zhou P, Chen C, Patil S, Dong S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front Nutr. 2024;11:1355542.
  4. Lerner A, Shoenfeld Y, Matthias T. Probiotics: If it does not help it does not do any harm. Really? Microorganisms 2019;7(4):104.
  5. Ayyash, M., Liu, S.Q., Special Issue "Probiotics, Prebiotics and Functional Foods: Health Benefits and Biosafety". Microorganisms 2023;11(5):1218.
  6. Kostenko VV, Mouzykantov AA, Baranova NB, Boulygina EA, Markelova MI, Khusnutdinova DR, Trushin MV, Chernova OA, Chernov VM. Development of Resistance to Clarithromycin and Amoxicillin-Clavulanic Acid in Lactiplantibacillus plantarum In Vitro Is Followed by Genomic Rearrangements and Evolution of Virulence. Microbiol. Spectr. 2022;10(3):e0236021.
  7. Anisimova E, Gorokhova I, Karimullina G, Yarullina D.. Alarming antibiotic resistance of lactobacilli isolated from probiotic preparations and dietary supplements. Antibiotics (Basel). 2022;11(11):1557.
  8. Yu S, Zhao Z, Hao P, Qiu Y, Zhao M, Zhou G, Zhang C, Kang J, Li P.. Biological Functions and Cross-Kingdom Host Gene Regulation of Small RNAs in Lactobacillus plantarum-Derived Extracellular Vesicles. Front Microbiol. 2022;13: 944361.
  9. Arias-Rojas A, Arifah A, Angelidou G, Alshaar B, Schombel U, Forest E, Frahm D, Brinkmann V, Paczia N, Beisel C, Gisch N, Iatsenko I. MprF-mediated immune evasion is necessary for Lactiplantibacillus plantarum resilience in Drosophila gut during inflammation bioRxiv. 2024;20(8):e1012462.
  10. Arias-Rojas A, Frahm D, Hurwitz R, Brinkmann V, Iatsenko I. Resistance to host 816 antimicrobial peptides mediates resilience of gut commensals during infection and aging in 817 Drosophila. Proc Natl Acad Sci. 2023;120:e2305649120.
  11. Martino ME, Joncour P, Leenay R, Gervais H, Shah M, Hughes S, Leulier F. Bacterial Adaptation to the Host’s Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis. Cell Host & Microbe. 2018;24(1):109–119.e6.
  12. Ford-Siltz LA, Tohma K, Alvarado GS, Kendra JA, Pilewski KA, Crowe JE. et al. Beneficial commensal bacteria promote Drosophila growth by downregulating the expression of peptidoglycan recognition proteins. iScience. 2022;25(6):104357.
  13. Grenier T, Consuegra J, Ferrarini MG, Akherra ZH, Bai, L, Dusabyinema, Y. et al.. Intestinal GCN2 controls Drosophila systemic growth in response to Lactiplantibacillus plantarum symbiotic cues encoded by r/tRNA operons. Elife. 2023;12:e76584.
  14. Kurata A, Kiyohara S, Imai T. Characterization of extracellular vesicles from Lactiplantibacillus plantarum. Sci. Rep. 2022;12:13330.
  15. da Silva Soares, NF, Quagliariello A, Yigitturk, S., Martino, ME. Gut microbes predominantly act as living beneficial partners rather than raw nutrients. Sci. Rep. 2023;13(1):11981.
  16. Darmancier H, Domingues CPF, Rebelo JS, Amaro A, Dionísio F, Pothier J, Serra O, Nogueira T. Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Antibiotics 2022;11(6):706.
  17. Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int. J. Antimicrob. Agents. 2021;57(2):106253.
  18. Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat. Rev. Microbiol. 2021;19(10):623-638.
  19. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, Tremblay A, Ouwehand AC. Criteria to Qualify Microorganisms as "Probiotic" in Foods and Dietary Supplements. Front Microbiol. 2020;11:1662.
  20. Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI. Omics of antimicrobials and antimicrobial resistance. Expert Opin. Drug Discov. 2019;14(5):455-468.
  21. Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018;9:2928.
  22. Cao C, Wang J, Liu Y, Kwok LY, Zhang H, Zhang W. Adaptation of Lactobacillus plantarum to Ampicillin Involves Mechanisms That Maintain Protein Homeostasis. mSystems. 2020;5(1):e00853-19.
  23. Uddin MJ, Dawan J, Jeon G, YuT, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms. 2020;8(5):670.
  24. Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics. 2023;15(2):522.
  25. Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. Bacteriocins From LAB and Other Alternative Approaches for the Control of Clostridium and Clostridiodes Related Gastrointestinal Colitis. Front Bioeng Biotechnol. 2020;8: 581778.
  26. Domínguez Rubio, A.P., D'Antoni, C.L., Piuri, M., Pérez, O.E. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol. 2022;13:864720.
  27. Poulton, N.C., Azadian, Z.A., DeJesus, M.A., Rock, J.M. Mutations in rv0678 Confer Low-Level Resistance to Benzothiazinone DprE1 Inhibitors in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2022;66(9):e0090422.
  28. Fast, D., Duggal, A., and Foley, E., 2018. Monoassociation with Lactobacillus Plantarum Disrupts Intestinal Homeostasis in Adult Drosophila melanogaster. MBio 9, e01114–18..
  29. Todorov, S.D., Perin, L.M., Carneiro, B.M., Rahal, P., Holzapfel, W., Nero, L.A., 2017. Safety of Lactobacillus plantarum ST8Sh and Its Bacteriocin. Probiotics Antimicrob Proteins. 9(3), 334-344.
  30. Yu S, Zhao Z, Hao P, Qiu Y, Zhao M, Zhou G, Zhang C, Kang J, Li P., 2022. Biological Functions and Cross-Kingdom Host Gene Regulation of Small RNAs in Lactobacillus plantarum-Derived Extracellular Vesicles. Front Microbiol. 13, 944361. https://doi.org/10.3389/fmicb.2022.944361.
  31. Singh, D., Singh, A. & Kumar, S., 2023. Probiotics: friend or foe to the human immune system. Bull Natl Res Cent. 47, 126.
  32. . Pinhal S, Ropers D, Geiselmann J, de Jong H. 2019. Acetate metabolism and the inhibition of bacterial growth by acetate. J Bacteriol 201, e00147-19. https://doi.org/10.1128/JB.00147-19.
  33. Yoo, H.C., Yu, Y.C., Sung, Y., 2019. Glutamine reliance in cell metabolism. Exp Mol Med52, 1496–1516 (2020).
  34. Longchamp, A., Mirabella, T., Arduini, A., MacArthur, M.R., Das, A., Treviño-Villarreal, J.H., Hine, C., Ben-Sahra, I., Knudsen, N.H., Brace, L.E., Reynolds, J., Mejia, P., Tao, M., Sharma, G., Wang, R., Corpataux, J.M., Haefliger, J.A., Ahn, K.H., Lee, CH., Manning, B.D., Sinclair, D.A., Chen, C.S., Ozaki, C.K., Mitchell, J.R., 2018. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 173(1), 117-129.e14..
  35. Tattoli, I., Sorbara, M.T., Vuckovic, D., Ling, A., Soares, F., Carneiro, L.A., Yang, C., Emili, A., Philpott, D.J., Girardin, S.E., 2012. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe. 11(6), 563-75.
  36. Pellon, A., Barriales D, Peña-Cearra A, Castelo-Careaga J, Palacios A, Lopez N, Atondo E, Pascual-Itoiz MA, Martín-Ruiz I, Sampedro L, Gonzalez-Lopez M, Bárcena L, Martín-Mateos T, Landete JM, Prados-Rosales R, Plaza-Vinuesa L, Muñoz R, de Las Rivas B, Rodríguez JM, Berra E, Aransay AM, Abecia L, Lavín JL, Rodríguez H, Anguita J. The commensal bacterium Lactiplantibacillus plantarum imprints innate memory-like responses in mononuclear phagocytes. Gut Microbes. 2021;13(1):1939598.
  37. Bajic, SS., Cañas, M.A., Tolinacki, M. Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. 2020;10(1):21829.
  38. Piecyk M, Triki M, Laval PA, Duret C, Fauvre J, Cussonneau L, Machon C, Guitton J, Rama N, Gibert B, Ichim G, Catez F, Bourdelais F, Durand S, Diaz JJ, Coste I, Renno T, Manié SN, Aznar N, Ansieau S, Ferraro-Peyret C, Chaveroux C. The stress sensor GCN2 differentially controls ribosome biogenesis in colon cancer according to the nutritional context. Mol Oncol. 2024;18(9):2111-2135.
  39. Nakamura, A., Kimura H. A new role of GCN2 in the nucleolus. Biochem Biophys Res Commun. 2017;485(2):484-491.
  40. Yamazaki, H., Kasai S, Mimura J, Ye P, Inose-Maruyama A, Tanji K, Wakabayashi K, Mizuno S, Sugiyama F, Takahashi S, Sato T, Ozaki T, Cavener DR, Yamamoto M, Itoh K. Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice. PLoS Genet. 2020;16(4):e1008693.
  41. Zou, C, Zhang Y, Liu H, Wu Y, Zhou X., Extracellular Vesicles: Recent Insights into the Interaction Between Host and Pathogenic Bacteria. Front Immunol. 2022;3:840550.
  42. da Silva Barreira, D., Laurent, J., Lourenço, J. Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. 2023; 13: 1163.
  43. Campoccia, D., Montanaro, L., Arciola, C.R., Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int. J. Mol. Sci. 2021;22(16);9100.
  44. Ratajczak, MZ, Ratajczak, J. Innate Immunity Communicates Using the Language of Extracellular Microvesicles. Stem Cell Rev Rep. 2021;17(2);502-510.
  45. Koeppen, K., Hampton, T.H., Jarek, M., Scharfe, M., Gerber, S.A., Mielcarz, D.W., Stanton, B.A. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles. PLOS Pathogens. 2016;12(6):e1005672.
  46. Chernov, V.M., Chernova, O.A., Mouzykantov, A.A., Medvedeva, E.S., Baranova, N.B., Malygina, T.Y, Aminov, R.I., Trushin, M.V. Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. FEMS Microbiol. Lett. 2018;365(18), 185.
  47. Diallo, I., Provost, P. RNA-Sequencing Analyses of Small Bacterial RNAs and their Emergence as Virulence Factors in Host-Pathogen Interactions. Int. J. Mol. Sci. 2020;21(5):1627.
  48. Mouzykantov AA., Rozhina, E.V., Fakhrullin, R.F., Gomzikova, MO, Zolotykh, M.A, Chernova O.A, Chernov V.M. Extracellular Vesicles from Mycoplasmas Can Penetrate Eukaryotic Cells In Vitro and Modulate the Cellular Proteome. Acta Naturae. 2021;13(4), 82-88.
  49. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME., Shamir, R., Swann, J.R., Szajewska, H., Vinderola, G.. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18(9);649-667.
  50. Chernov VM, Chernova OA, Trushin MV. Human and animal intestinal commensals and probiotics vs modern challenges of biosafety: problems and prospects. Archives of Razi Institute. 2024;79(1):28-32