Effect of Three Insect Growth Regulators on The Avian Malaria Vector -Culiseta longiareolata Larvae- Field Population

Document Type : Original Articles

Authors

1 Laboratory of Genetic, Biotechnology and Valorization of Bioresources (LGBVB), University of Biskra, Algeria

2 Laboratory of Ecobiologie des Milieux Marins et Littoraux (EMMAL), Department of Biology, Faculty of Sciences, University of Badji Mokhtar,Annaba, Algeria

10.32592/ARI.2024.79.6.1305

Abstract

Abstract

Several species of mosquitoes (Culicidae) are responsible for transmitting pathogens to animals and humans. The study of these species and the fight against these natural enemies are among the current concerns of scientists. Insect growth regulators (IGRs) are chemicals that disrupt the growth and development of insects. They are often used in pest control strategies to target specific stages in an insect's life cycle, An inventory of Culicidae in the M'chouneche region (34° 56' 59.99" N, 6° 00' 0.00" E) (Biskra, southeastern Algeria) was conducted in various breeding sites between November 2022 and May 2023.Four species of Culicidae were identified (Culiseta longiareolata, Culex pipiens, Culex theileri and Anopheles multicolor). Under experimental conditions, control tests were conducted to evaluate the toxicity of three insects growth regulators (Lufenuron,

Teflubenzuron, and Spirotetramat) on the fourth larval stage of Cs. longiareolata. Lufenuron revealed a higher toxic effect with a rate of 57%, ranging from 0 to 100%, compared to Spirotetramat with an average mortality rate of 37.71% with a range of 0 to 80%, and Teflubenzuron showed an average mortality rate of 12.08%, ranging from 0 to 45%. The mortality rates increased from one concentration to another over time, and the correlation coefficient was low 30 % about the two factors (time and concentration) with the mortality rates. Individuals treated after their adult stage showed a significant late in their development. For the concentration of 20 mg/l and 40 mg/l, the delay duration was approximately 2 days ± 12 hours. In contrast, for the third concentration (80 mg/l), the development delay was around 3 days ± 15 hours.



Keywords. M'chouneche, Lufenuron, Teflubenzuron, Spirotetramat, Culiseta longiareolata.

Keywords

Main Subjects


1.    Bley D. Les maladies à transmission vectorielle, pourquoi s’y intéresser. Natures Sciences Sociétés. 2010;182(2):101-2.
2.    Rodhain F. Le microbe, l’insecte, l’homme et les autres...: le monde des maladies à vecteurs. Bull Acad Vet Fr. 2015;168(1):5-11.
3.    Boniface PK, Ferreira EI. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res. 2019;33(10):2473-517.
4.    Donald CL, Siriyasatien P, Kohl A. Toxorhynchites species: a review of current knowledge. Insects. 2020;11(11):747.
5.    Huang Y-JS, Higgs S, Vanlandingham DL. Arbovirus-mosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses. Front microbiol. 2019;10:22.
6.    Merabti B, Lebouz I, Adamou A, Kouidri M, Ouakid M. Effects of certain natural breeding site characteristics on the distribution of Culicidae (Diptera) mosquito species in southeast Algeria. Afr Entomol. 2017;25(2):506-14.
7.    Merabti B, Lebouz I, Adamou A, Ouakid ML. Effet toxique de l’extrait aqueux des fruits de Citrullus colocynthis (L.) Schrad sur les larves des Culicidae. Revue de bioressources. 2015; 5 (2), 120-130. Rev bioress.
8.    Rajashekara S, Devi S, Venkatesha M. Biotechnological Tools for Monitoring, Assessment, and Insect Pest Management in Agricultural Ecosystems.  Advances in Integ Pest Mana Tech. ; 2022. p. 315-90.
9.    Mwangangi JM, Muturi EJ, Shililu J, Muriu SM, Jacob B, Kabiru EW, et al. Survival of immature Anopheles arabiensis (Diptera: Culicidae) in aquatic habitats in Mwea rice irrigation scheme, central Kenya. Malar J. 2006;5(1):1-8.
10.    Finney D. The application of probit analysis to the results of mental tests. Psychometrika. 1944;9(1):31-9.
11.    Sankar M, Kumar S. A systematic review on the eco-safe management of mosquitoes with diflubenzuron: an effective growth regulatory agent. Acta Ecol Sin. 2023;43(1):11-9.
12.    Smagghe G, Zotti M, Retnakaran A. Targeting female reproduction in insects with biorational insecticides for pest management: a critical review with suggestions for future research. Current opinion in insect science. 2019;31:65-9.
13.    Floore TG. Mosquito larval control practices: past and present. J Am Mosq Control Assoc. 2006;22(3):527-33.
14.    Piri F, Sahragard A, Ghadamyari M. Lethal and sublethal effects of a chitin synthesis inhibitor, lufenuron, against Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Crop Prot. 2016;5(2):203-14.
15.    Butter N, Singh G, Dhawan A. Laboratory evaluation of the insect growth regulator lufenuron against Helicoverpa armigera on cotton. Phytoparasitica. 2003;31:200-3.
16.    Acheuk F, Cusson M, Doumandji-Mitiche B. Effects of a methanolic extract of the plant Haplophyllum tuberculatum and of teflubenzuron on female reproduction in the migratory locust, Locusta migratoria (Orthoptera: Oedipodinae). J Insect Physiol. 2012;58(3):335-41.
17.    Fansiri T, Pongsiri A, Khongtak P, Nitatsukprasert C, Chittham W, Jaichapor B, et al. The impact of insect growth regulators on adult emergence inhibition and the fitness of Aedes aegypti field populations in Thailand. Acta Trop. 2022;236:106695.
18.    Assar AA, Abo-Elmahasen MM, Mahmoud SH, Younes AI. Biological effects of some chitin synthesis inhibitors on Culex pipiens (diptera: culicidae). J Egypt Soc Parasitol 2019;49(1):221-6.
19.    Rumbos CI, Athanassiou CG. Assessment of selected larvicides for the control of Culex pipiens pipiens biotype and Culex pipiens molestus biotype under laboratory and semi‐field conditions. Pest Management Science. 2020;76(11):3568-76.
20.    Silva PG, Vieira MCdS, Vieira ECdS, da Silva IF, Ávila CJ. Effect of Insect Growth Regulator Insecticides Novaluron, Teflubenzuron and Lufenuron on the Morphology and Physiology of Euschistus heros. J Agric Sci. 2023;15(7).
21.    Liang H-Y, Yang X-M, Sun L-J, Zhao C-D, Chi H, Zheng C-Y. Sublethal effect of spirotetramat on the life table and population growth of Frankliniella occidentalis (Thysanoptera: Thripidae). Entomol Gen 2021;41(3).
22.    Marcic D, Petronijevic S, Drobnjakovic T, Prijovic M, Peric P, Milenkovic S. The effects of spirotetramat on life history traits and population growth of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 2012;56:113-22.
23.    Kamran M, Shad SA, Binyameen M, Abbas N, Anees M, Shah RM, et al. Toxicities and Cross-Resistance of Imidacloprid, Acetamiprid, Emamectin Benzoate, Spirotetramat, and Indoxacarb in Field Populations of Culex quinquefasciatus (Diptera: Culicidae). Insects. 2022;13(9):830.
24.    Mageed AA, El-bokl M, Khidr A-A, Said R. Disruptive effects of selected chitin synthesis inhibitors on cotton leaf worm Spodoptera littoralis (Boisd.). Aust j basic appl sci 2018;12(1).
25.    Zhang L, Yan S, Li M, Wang Y, Shi X, Liang P, et al. Nanodelivery system alters an insect growth regulator’s action mode: from oral feeding to topical application. ACS Applied Materials & Interfaces. 2022;14(30):35105-13.