Regulation of Neuropeptide Y Receptor Gene Expression and ‎Hormone Level in Obese Male Rats Receiving 6-Gingerol and L-Arginine ‎Supplementation

Document Type : Original Articles

Authors

1 Department of Veterinary Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Veterinary Pathology, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Veterinary Pathology, Karaj Branch, Islamic Azad University, Karaj, Iran

4 Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

10.32592/ARI.2024.79.1.180

Abstract

Obesity and its associated disorders, such as hyperlipidemia, have become a ‎global issue ‎following the consumption of unhealthy, high-fat, and high-‎carbohydrate foods, which ‎burdens the economies and the ‎health systems of human societies ‎worldwide‎.‎‏‎‏ ‏This study aimed to evaluate ‎the effect of oral consumption of 6-gingerol and L-arginine ‎supplements on ‎serum lipid profile (triglyceride, cholesterol, high-density lipoprotein, and ‎low-density lipoprotein), obesity factors, insulin, corticosterone and testosterone hormones, ‎and ‎expression of neuropeptide Y (NPY) gene in high-carbohydrate diet (HCD) ‎induced ‎obese rats. Thirty rats in five groups were fed a diet specific to each ‎group for 12 weeks ‎and then treated with the oral administration of L-arginine ‎‎(200 mg/day) and 6-gingerol (100 ‎mg/day) for twelve weeks. The food and water ‎intake and weight change were then measured‎. In addition, plasma glucose, ‎triglyceride, cholesterol, high-density lipoprotein ‎‎(HDL), very-low-density lipoprotein (VLDL)‎, low-density ‎lipoprotein (LDL), and serum ‎hormone levels, including corticosterone, testosterone, and insulin, were measured, and NPY, ‎Y1, and Y5 receptor gene expression were recorded using real-time PCR. Administration of ‎‎6-gingerol and L-arginine decreased food intake, ‎weight ‎gain‎, glucose levels, insulin levels, ‎and homeostasis model assessment-insulin resistance (HOMA-IR) index compared to ‎the ‎HCD control group. In addition, corticosterone and testosterone levels in the ‎study groups ‎showed a significant decrease (P

Keywords

Main Subjects


References
1. Facts about overweight and obesity,
https://www.who.int. (2022).
2. Christian M, Gereffi G. Fast-food value chains and childhood
obesity: A global perspective. Pediatric obesity: Springer;
2018. p. 717-30.
3. Chait A, Den Hartigh LJ. Adipose tissue distribution,
inflammation and its metabolic consequences, including
diabetes and cardiovascular disease. Front Cardiovasc Med.
2020;7:22.
4. Semwal RB, Semwal DK, Combrinck S, Viljoen AM.
Gingerols and shogaols: Important nutraceutical principles
from ginger. Phytochemistry. 2015;117:554-68.
5. Zick SM, Djuric Z, Ruffin MT, Litzinger AJ, Normolle DP,
Alrawi S, et al. Pharmacokinetics of 6-gingerol, 8-gingerol,
10-gingerol, and 6-shogaol and conjugate metabolites in
healthy human subjects. Cancer Epidemiol Biomark Prev.
2008;17(8):1930-6.
6. Wang S, Zhang C, Yang G, Yang Y. Biological properties of
6-gingerol: a brief review. Nat Prod Commun.
2014;9(7):1027- 30.
7. Mousavi SM, Milajerdi A, Fatahi S, Rahmani J, Zarezadeh
M, Ghaedi E, et al. The effect of L-arginine supplementation
on obesity-related indices: A systematic review and metaanalysis of randomized clinical trials. Int J Vitam Nutr Res.
2019;91(1):164-74.
8. Liao SY, Linderholm A, Showalter MR, Chen CH, Fiehn O,
Kenyon NJ. L‐arginine as a potential GLP‐1‐mediated
immunomodulator of Th17‐related cytokines in people with
obesity and asthma. Obes Sci Pract. 2021;7(3):339-45.
9. Mirmiran P, Bahadoran Z, Ghasemi A, Azizi F. The
association of dietary L-arginine intake and serum nitric oxide
metabolites in adults: a population-based study. Nutrients.
2016;8(5):311-24.
10. Khosroshahi MZ, Asbaghi O, Moradi S, Kaviani M,
Mardani M, Jalili C. The effects of supplementation with Larginine on anthropometric indices and body composition in
overweight or obese subjects: A systematic review and metaanalysis. J Funct Foods. 2020;71:104022.
11. Mahdavi K, Zendehdel M, Baghbanzadeh A. Central effects
of opioidergic system on food intake in birds and mammals: a
review. Vet Res Commun. 2023:1-12.
12. Shojaei M, Yousefi AR, Zendehdel M, Khodadadi M. Food
Intake Regulation in Birds: the Role of Neurotransmitters and
Hormones. Iran J Vet Med. 2020;14(1).
13. Wu Y, He H, Cheng Z, Bai Y, Ma X. The role of
neuropeptide Y and peptide YY in the development of obesity
via gut-brain axis. Curr Protein Pept Sci. 2019;20(7):750-8.
14. Katus U, Villa I, Ringmets I, Veidebaum T, Harro J.
Neuropeptide Y gene variants in obesity, dietary intake, blood
pressure, lipid and glucose metabolism: A longitudinal birth
cohort study. Peptides. 2021;139:170524.
15. Amini N, Movahedi M, Abolfathi AA, Majd A. The effects
of L-Arginine on oxidative and nitrosative stress and
inflammation factors in patients infected with Helicobacter
pylori. Iran Red Crescent Med J. 2018;20(6):e63590.
16. Dashtabi A, Mazloom Z, Fararouei M, Hejazi N. Oral Larginine administration improves anthropometric and
biochemical indices associated with cardiovascular diseases in
obese patients: a randomized, single blind placebo controlled
clinical trial. Res Cardiovasc Med. 2016;5(1):e29419.
17. Saravanan G, Ponmurugan P, Deepa MA, Senthilkumar B.
Anti‐obesity action of gingerol: effect on lipid profile, insulin,
leptin, amylase and lipase in male obese rats induced by a
high‐fat diet. J Sci Food Agric. 2014;94(14):2972-7.
18. Eid BG, Mosli H, Hasan A, El-Bassossy HM. Ginger
ingredients alleviate diabetic prostatic complications: Effect on
oxidative stress and fibrosis. Evid-based Complement Altern
Med. 2017;2017:6090269.
19. Behiry EG, El Nady NM, OM AH, Mattar MK, Magdy A.
Evaluation of TG-HDL ratio instead of HOMA ratio as insulin
resistance marker in overweight and children with obesity.
Endocr Metab Immune Disord Drug Targets. 2019;19(5):676-
82.
20. Fu L-l, Xu Y, Li D-d, Dai X-w, Xu X, Zhang J-s, et al.
Expression profiles of mRNA and long noncoding RNA in the
ovaries of letrozole-induced polycystic ovary syndrome rat
model through deep sequencing. Gene. 2018;657:19-29.
21. Khansari MR, Panahi N, Hosseinzadeh S, Zendehdel M.
Effect of cannabinoid-serotonin interactions in the regulation
of neuropeptide Y1 receptors expression in rats: the role of
CB1 and 5-HT2C receptor. Comp Clin Path. 2020;29(2):561-
71.
Karbasian et al / Archives of Razi Institute, Vol. 79, No. 1 (2024) 185-193 193
22. Pan X-F, Wang L, Pan A. Epidemiology and determinants
of obesity in China. Lancet Diabetes Endocrinol.
2021;9(6):373-92.
23. McCleskey BC, Davis GG, Dye DW. Correcting the count:
improving vital statistics data regarding deaths related to
obesity. J Forensics Res. 2018;63(4):1155-9.
24. Keaver L, Xu B, Jaccard A, Webber L. Morbid obesity in
the UK: A modelling projection study to 2035. Scand J Public
Health. 2020;48(4):422-7.
25. Lin H, An Y, Tang H, Wang Y. Alterations of bile acids and
gut microbiota in obesity induced by high fat diet in rat model.
J Agric Food Inf. 2019;67(13):3624-32.
26. Collins K, Hart D, Seerattan R, Reimer R, Herzog W. Highfat/high-sucrose diet-induced obesity results in joint-specific
development of osteoarthritis-like degeneration in a rat model.
Bone J Res. 2018;7(4):274-81.
27. Naidu PB, Uddandrao VS, Naik RR, Suresh P, Meriga B,
Begum MS, et al. Ameliorative potential of gingerol:
Promising modulation of inflammatory factors and lipid
marker enzymes expressions in HFD induced obesity in rats.
Mol Cell Endocrinol. 2016;419:139-47.
28. Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James
DE. Muscle and adipose tissue insulin resistance: malady
without mechanism? J Lipid Res. 2019;60(10):1720-32.
29. Kojta I, Chacińska M, Błachnio-Zabielska A. Obesity,
bioactive lipids, and adipose tissue inflammation in insulin
resistance. Nutrients. 2020;12(5):1305.
30. Shalaby MA, Saifan HY. Some pharmacological effects of
cinnamon and ginger herbs in obese diabetic rats. J Intercult
Ethnopharmacol. 2014;3(4):144.
31. Ghlissi Z, Atheymen R, Boujbiha MA, Sahnoun Z, Makni
Ayedi F, Zeghal K, et al. Antioxidant and androgenic effects
of dietary ginger on reproductive function of male diabetic
rats. Int J Food Sci Nutr. 2013;64(8):974-8.
32. Mazidi M, Gao H-K, Rezaie P, Ferns GA. The effect of
ginger supplementation on serum C-reactive protein, lipid
profile and glycaemia: a systematic review and meta-analysis.
Food Nutr Res. 2016;60(1):32613.
33. Kravchenko G, Krasilnikova O, Mazen M. Hypoglycemic
and hypolipidemic activity of arginine containing bearberry
leaves extract in insulin resistant rats. Med Clin Chem.
2020;22:5-10.
34. Xu Z, Liu C, Liu S, Zhou Z. Comparison of efficacy and
safety of daily oral L‐arginine and PDE5Is alone or
combination in treating erectile dysfunction: A systematic
review and meta‐analysis of randomised controlled trials.
Andrologia. 2021;53(4):e14007.
35. Salaramoli S, Mehri S, Yarmohammadi F, Hashemy SI,
Hosseinzadeh H. The effects of ginger and its constituents in
the prevention of metabolic syndrome: A review. Iran J Basic
Med Sci. 2022;25(6):664.
36. de Las Heras N, Valero-Muñoz M, Martín-Fernández B,
Ballesteros S, López-Farré A, Ruiz-Roso B, et al. Molecular
factors involved in the hypolipidemic-and insulin-sensitizing
effects of a ginger (Zingiber officinale Roscoe) extract in rats
fed a high-fat diet. Appl Physiol Nutr Metab 2017;42(2):209-
15.
37. Isa Y, Miyakawa Y, Yanagisawa M, Goto T, Kang M-S,
Kawada T, et al. 6-Shogaol and 6-gingerol, the pungent of
ginger, inhibit TNF-α mediated downregulation of adiponectin
expression via different mechanisms in 3T3-L1 adipocytes.
Biochem Biophys Res Commun. 2008;373(3):429-34.
38. Loh K, Herzog H, Shi YC. Regulation of energy
homeostasis by the NPY system. Trends Endocrin Met.
2015;26(3):125-35.
39. Sato T, Nakamura Y, Shiimura Y, Ohgusu H, Kangawa K,
Kojima M. Structure, regulation and function of ghrelin. J
Biochem. 2011;151(2):119-28.
40. Ferreira-Marques M, Aveleira CA, Carmo-Silva S, Botelho
M, de Almeida LP, Cavadas C. Caloric restriction stimulates
autophagy in rat cortical neurons through neuropeptide Y and
ghrelin receptors activation. Aging. 2016;8(7):1470.
41. Ahmadifar E, Sheikhzadeh N, Roshanaei K, Dargahi N,
Faggio C. Can dietary ginger (Zingiber officinale) alter
biochemical and immunological parameters and gene
expression related to growth, immunity and antioxidant
system in zebrafish (Danio rerio)? Aquac. 2019;507:341-8.
42. Al Asoom L, Alassaf MA, AlSulaiman NS, Boumarah DN,
Almubireek AM, Alkaltham GK, et al. The Effectiveness of
Nigella sativa and Ginger as Appetite Suppressants: An
Experimental Study on Healthy Wistar Rats. Vasc Health Risk
Manag. 2023:1-11.
43. Ibars M, Ardid-Ruiz A, Suárez M, Muguerza B, Bladé C,
Aragonès G. Proanthocyanidins potentiate hypothalamic
leptin/STAT3 signalling and Pomc gene expression in rats
with diet-induced obesity. Int J Obes. 2017;41(1):129-36.
44. Luo J, Qi J, Wang W, Luo Z, Liu L, Zhang G, et al.
Antiobesity effect of flaxseed polysaccharide via inducing
satiety due to leptin resistance removal and promoting lipid
metabolism through the AMP-activated protein kinase
(AMPK) signaling pathway. J Agric Food Chem.
2019;67(25):7040-9.
45. Banihani SA. Ginger and testosterone. Biomolecules.
2018;8(4):119-27.