Proteomic analysis and immunoprofiling of Persian horned viper venom, Pseudocerastes persicus from central part of Iran.

Document Type : Original Articles

Authors

1 Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj

2 Department of Human Bacterial Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj

3 Razi Vaccine and Serum Research Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj

4 Department of venomous animal, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj

10.32592/ARI.2024.79.1.154

Abstract

Numerous species of venomous snakes of medical importance exist in Iran. Pseudocerastes persicus one of the medically important snake that is also called the Persian horned viper, has a geographical spread that extends to the east, southwest, and central areas of the country and is endemic across the wider region. As a result, this species is responsible for a significant number of snakebite occurrences.
Venom from Pseudocerastes persicus found in the central province of Semnan was found to contain phospholipase A2 and L-amino acid oxidase activities, and high toxic potency. The venom was fractionated by reverse-phase HPLC and analyzed by SDS-PAGE, Western blotting and two-dimensional electrophoresis. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), a range of components were identified, consistent with the biochemical and toxicological properties of the venom: proteins identified from 2D electrophoresis and shotgun methods included metallo- and serine proteases, phospholipases, oxidases, and Kunitz trypsin inhibitors along with many other components at lower qualitative abundance.
This study provides a more detailed understanding of the protein profile of Iranian P. persicus venom, which can be effective in the production of an effective antidote against it. The analysis of the resulting data shows that there is a wide range of proteins in the venom of the Iranian Persian horned viper. This informations can provide a better understanding of how venom is neutralized by polyclonal antivenom. Considering the wide presence of this snake and its related species in Iran and surrounding countries, knowing the venom protein profile of this family can be of great support to antivenom producers such as Razi Institute in the preparation of regional antivenoms.

Keywords

Main Subjects


References
1. Lewis, R.L.; Guttmann. Snake venoms and the
neuromuscular junction. Semin Neurol. 2004; 4: 175–179.
2. Zhang, Y. Why do we study animal toxins? Dongwuxue
Yanjiu. 2015; 36: 183-222.
3. Tasoulis, T.; Isbister, G.K. A Review and Database of
Snake Venom Proteomes. Toxins; . 2017; 9 :290
4. Gutierrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R.
A., Williams, D. J., and Warrell, D. A.Snakebite
envenoming. Nat. Rev. Dis. Primers. 2013; 3: 17079.
5. WHO, department news. 2019.Snakebite: WHO targets
50% reductionin deaths and disabilities. Avaiable from:
www.who.int/news-room/detail/06-05-2019-snakebitewho-targets-50-reduction-in-deaths-and-disabilities.
6. Latifi, M. The Snakes of Iran. Published by Environment
Protection Organization, Tehran. 2000; 478 (in Persian,
with Latin index).
7. Dehghani, R., Mehrpour, O., Panjeh Shahi, M., Jazayeri,
M., Karrari, P .Keyler, D., Zamani, N.Epidemiology of
venomous and semivenomous snakebites (Ophidia:
Viperidae, Colubridae) in the Kashan city of the Isfahan
province in Central Iran. , 2014; JRMS: 19, 33e40.
8. Vazirianzadeh, B., Chitins, P., Vahabe, A., Mozafari, A.
Epidemiology study of patients with snake bitting in the
hospital of Ahvaz, Iran. J. Exp. Zool. 2008; 497e500.
9. Firouz, Eskandar. The Complete Fauna of Iran: Norway
and the Struggle for Power in the New North. London:
I.B.Tauris, 2005. Accessed July 17, 2023.
10. S.A.M.Kularatne NimalSenanayake, 2014. Chapter 66 -
Venomous snake bites, scorpions, and spiders. Handbook
of Clinical Neurology Volume 120, 987-1001).
11. Bobby B., Matthieu B., Masoud Y., Joachim N., Frank D.,
Maud B., Laura T. Sympatry of Pseudocerastes persicus
and P. urarachnoides in the western Zagros Mountains,
Iran. Herpetology Notes. 2017; 10,323-325.
12. Golay, Philippe. Book reviews. True Vipers : Natural
history and toxinology of Old World vipers, by David
Mallow, David Ludwig and Göran Nilson. Herpetological
Review. 2004;35: 200-202.
13. Bostanchi H, Anderson SC, Kami HG, Papenfuss TJ. A
new species of Pseudocerastes with elaborate tail
ornamentation from western Iran (Squamata: Viperidae).
Proc Calif Acad Sci 2006; 4: 443-450.
14. Phelps T. Old World Vipers: A Natural History of the
Azemiopinae and Viperinae. 2006;1st ed. Frankfurt,
Germany Edition Chimaria.
15. Gardner, A.S. The Amphibians and Reptiles of Oman and
the UAE. Frankfurt am Main, Edition Chimaira. (2013).
16. Behzad, F., Nasrullah, R., Eskandar R., Fatemeh T., Mehdi
R. Molecular systematics of the genus Pseudocerastes
(Ophidia: Viperidae) based on the mitochondrial
cytochrome b gene. Turk J Zool. 2014;38: 575-581.
17. Samira, A. Nasim Z., Mohammad, A., Omid M. A
Narrative Review of Acute Adult Poisoning in Iran. Iran J
Med Sci. 2017; 42(4): 327–346.
18. Fathinia B., Nasrullah, R. On the species of Pseudocerastes
(OPHIDIA: VIPERIDAE) IN IRAN, Russian Journal of
Herpetology. 2010;17(4): 275-279.
19. Yousefi, M., Kafash, A., Khani, A. Applying species
distribution models in public health research by predicting
snakebite risk using venomous snakes’ habitat suitability as
an indicating factor. Sci Rep.2020; 10: 18073.
20. Bdolah A. Comparison of venoms from two subspecies of
the false horned viper (Pseudocerastes
persicus).Toxicon.1986; 24:726 – 729.
21. Syed A. Alia, Timothy N.W. Jackson , Nicholas R.
Casewell, Dolyce H.W. Low Sarah Rossi, Kate Baumann,
Behzad Fathinia , Jeroen Visser , Amanda Nouwens,Iwan
Hendrikx, Alun Jones , Bryan G. Fry. Extreme venom
variation in Middle Eastern vipers: A 2 proteomics
comparison of Eristicophis macmahonii, Pseudocerastes
fieldi and Pseudocerastes persicus. Journal of
Proteomics.2015;116: 106-113.
22. Gasperetti J. Snakes of Arabia in Fauna of Saudi Arabia.
1988; 9:169 – 450.
Samianifard et al / Archives of Razi Institute, Vol. 79, No. 1 (2024) 159-172 171
23. Laemmli, Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature.1970;
227: 680–685.
24. Fariba G., Rasool M., Ali N., Arash G., Tara E. Study of
Protease Properties in Pseudocereastes Percicus Venom.
2020. DOI: 10.22092/VJ.2020.127979.1626.
25. Rasool M., S.M.Razavi, Fariba G. Determination of the
lethal dose (LD50) and the effective dose (ED50) of Iranian
horned viper venom. 2018;DOI:
10.22092/VJ.2018.116295.1389.
26. Fry, B. G., Vidal, N., Norman, J. A., Vonk, F. J., Scheib,
H., Ramjan, S. F. R. Early evolution of the venom system
in lizards and snakes. Nature. 2006; 439:584–588.
27. Chan, Y. S., Cheung, R. C. F., Xia, L. X., Wong, J. H., Ng,
T. B., and Chan, W. YSnake venom toxins: toxicity and
medicinal applications. Appl. Microbiol. Biotechnol. 2016;
100: 6165–6181.
28. Calvete, J. J., Sanz, L., Angulo, Y., Lomonte, B., and
Gutiérrez, J. M. Venoms, venomics, antivenomics. FEBS
Lett.2009; 583: 1736–1743.
29. Tan, K.Y., Tan, N.H. & Tan, C.H., Venom proteomics and
antivenom neutralization for the Chinese eastern Russell’s
viper, Daboia siamensisfrom Guangxi and Taiwan. Sci
Rep.2018; 8: 8545.
30. Tan, C.H.; Tan, K.Y.; Ng, T.S.; Sim, S.M.; Tan, N.H.
Venom Proteome of Spine-Bellied Sea Snake (Hydrophis
curtus) from Penang, Malaysia: Toxicity Correlation,
Immunoprofiling and Cross-Neutralization by Sea Snake
Antivenom. Toxins. 2019; 11: 3.
31. Rusmili, M.R.; Yee, T.T.; Mustafa, M.R.; Hodgson, W.C.;
Othman, I. Proteomic characterization and comparison of
malaysian Bungarus candidus and Bungarus
fasciatus venoms. J. Proteom. 2014; 110: 129–144.
32. Malih, I.; Ahmad Rusmili, M.R.; Tee, T.Y.; Saile, R.;
Ghalim, N.; Othman, I. Proteomic analysis of moroccan
cobra Naja haje legionis venom using tandem mass
spectrometry. J. Proteom. 2014; 96:240–252.
33. Fathinia B., Nasrullah R., Eskandar R.Molecular phylogeny
and historical biogeography of genera Eristicophis and
Pseudocerastes(Ophidia, Viperidae). Zool Scr.2018; 1-13.
34. Philip de Pous, Marc Simó-Riudalbas, Johannes Els,
Sithum Jayasinghe, Felix Amat & Salvador Carranza.
Phylogeny and biogeography of Arabian populations of the
Persian Horned Viper Pseudocerastes persicus (Duméril,
Bibron & Duméril, 1854). Zoology in the Middle
East. 2016;62(3):, 231-238.
35. Rouhullah, D., Behrooz F., Morteza P., Mehrdad, J. Ten
years of snakebites in Iran. Toxicon. 2014;90: 291-298.
36. Bdolah, A., S Kinamon, R Batzri-Izraeli The neurotoxic
complex from the venom of Pseudocerastes fieldi.
Contribution of the nontoxic subunit. Biochemistry
International. 1985;11(4):627-636.
37. Wolfgang W., Lindsay P., Catharine E. P., Daniel E. W. A
nesting of vipers: Phylogeny and historical biogeography of
the Viperidae (Squamata: Serpentes). Molecular
Phylogenetics and Evolution.2008; 49:445–459.
38. Gulati, A.; Isbister, G.K.; Duffull, S.B. Effect of Australian
elapid venoms on blood coagulation: Australian Snakebite
Project (ASP-17). Toxicon. 2013;61: 94-104.
39. Valentin, E.; Lambeau, G. What can venom
phospholipases A2 tell us about the functional diversity of
mammalian secreted phospholipases A2. Biochimie.
2000:82: 815–831.
40. Van Hensbergen, V.P.; Wu, Y.; Van Sorge, N.M.; Touqui,
L. Type IIA Secreted phospholipase A2 in Host Defense
against Bacterial Infections. Trend Immunol. 2020; 41:
313–326.
41. Moreira, V, Gutiérrez, JM, Lomonte B. 12-HETE is a
regulator of PGE2 production via COX-2 expression
induced by a snake venom group IIA phospholipase A2 in
isolated peritoneal macrophages. Chem. Biol. Interact.
2020;317: 108903.
42. Salomón, H. V, Luciana M. H. Mauricio G.H., Edda E. N.
N, Sergio, M. ACP-TX-I and ACP-TX-II,. Two Novel
Phospholipases A2 Isolated from Trans-Pecos Copperhead
Agkistrodon contortrix pictigaster Venom: Biochemical
and Functional Characterization. 2019;11: 661.
43. Huixiang Xiao, Hong Pan, Keren Liao, Mengxue Yang,
Chunhong Huang. Snake Venom PLA2, a Promising
Target for Broad-Spectrum Antivenom Drug Development.
BioMed Research International. 2017, Article ID 6592820,
10 pages.
44. Fox, J. W., and Serrano, S. M. Structural considerations of
the snake venom metalloproteinases, key members of the
M12 reprolysin family of metalloproteinases. Toxicon.
2015;45: 969–985.
45. Casewell, N. R., Wagstaff, S. C., Harrison, R. A., Renjifo,
C., and Wuster, W. Domain loss facilitates accelerated
evolution and neofunctionalization of duplicate snake
venom metalloproteinase toxin genes. Mol. Biol. Evol.
2001;28:2637–2649.
46. Soichi, T., Hiroyuki, T., Sadaak, I. Snake venom
metalloproteinases: Structure, function and relevance to the
mammalian ADAM/ADAMTS family proteins.
Biochimica et Biophysica Acta. 2012;1824(1): 164-176.
47. Markland, F. S. Jr., Swenson, S. Snake venom
metalloproteinases. Toxicon. 2013; 62: 3–18.
48. Etsuko O.Hidenobu T. Distribution of low molecular
weight platelet aggregation inhibitors from snake venoms.
Toxicon. 2007; 49(3):293-8.
49. Thava M. C. L., Kae Y. T., Choo H. T. Proteomics and
antivenom immunoprofiling of Russell’s viper (Daboia
siamensis) venoms from Thailand and Indonesia. J Venom
Anim Toxins incl Trop Dis. 2020; 26:e20190048.
0. Zorica L., Adrijana L., Cho Y.K., R. Manjunatha
K., Alenka T.B.,Jože P., Igor K. The Procoagulant Snake
Venom Serine Protease Potentially Having a Dual, Blood
Coagulation Factor V and X-Activating Activity. Toxins.
2020;12(6): 358.
51. Kordis, D., Gubensek, F.Adaptive evolution of animal
toxin multigene families. Gene. 2000;261: 43–52.
52. Marchler-Bauer, A., Anderson, J.B., Chitsaz, F.,
Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer,
L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., He, S.,
Hurwitz, D.I., Jackson, J.D., Ke, Z., Lanczycki, C.J.,
Liebert, C.A., Liu, C., Lu, F., Lu, S., Marchler, G.H.,
Mullokandov, M., Song, J.S., Tasneem, A., Thanki, N.,
Yamashita, R.A., Zhang, D., Zhang, N., Bryant, S.H.
CDD: specific functional annotation with the Conserved
Domain Database. Nucleic Acids Res. 2009; 37: 205–210.
53. Zupunskia V., D. Kordis, F. Gubensek .Adaptive evolution
in the snake venom Kunitz / BPTI protein family. FEBS
Lett. 2003;547:131–136.
54. Ascenzi P., A. Bocedi, M. Bolognesi, A. Spallarossa, M.
Coletta, R. De Cristofaro, E. Menegatti .The Bovine Basic
Pancreatic Trypsin Inhibitor (Kunitz Inhibitor): A
Milestone Protein, Curr. Protein Pept. Sci. 2003;4:231–251.
55. L. Chang, C. Chung, H. Huang, S. Lin, Purification and
Characterization of a Chymotrypsin Inhibitor from the
Venom of Ophiophagus hannah (King Cobra). Biochem.
Biophys. Res. Commun. 2001; 283: 862–867.
56. Zargan, J., Nodushan, M.M., Sobati, H., Goodarzi, H.,
Mohammadi, A.H.N., Ebrahimi, F. Anti-cancer and antibacterial effects of crude venom of pseudocerastes persicus
snake. Koomesh. 2020; 22(3): 518-528.
57. Benyamin S., Zahra S., Hamidreza G. ,Mahnaz S., Fatemeh
T., Masoumeh B. Cytotoxic effects of Pseudocerastes
persicus venom and its HPLC fractions on lung cancer
cells. J Venom Anim Toxins incl Trop Dis. 2019;
25:e20190009.
58. Banijamali S.E., M. Amininasab, M.M. Elmi,
Characterization of a new member of kunitz-type protein
family from the venom of Persian false-horned viper,
Pseudocerastes persicus, Archives of Biochemistry and
Biophysics. 2019;15: 662:1-6.