Utilizing Aspergillus Fungi, a Significant Veterinary Pathogen, in Lung Cancer Treatment: A Novel Approach

Document Type : Review Article

Authors

1 Faculty of Health and Social Care, Swansea University, Wales, United Kingdom

2 Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran

3 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

4 Pharmacy student, School of Pharmacy, Università di Roma Tor Vergata, Rome, Italia

5 Medical doctor, Mashhad University of Medical Sciences, Mashhad, Iran

10.32592/ARI.2025.80.1.1

Abstract

Cancer stands as an enduring global health challenge, demanding innovative therapeutic approaches for effective intervention. Recent years have witnessed intensive investigations into the potential anti-cancer properties of various filamentous Aspergillus molds. This review endeavors to comprehensively examine the scientific evidence on the potential anti-tumor effects of distinct Aspergillus species and their secondary metabolites in the context of lung cancer. Numerous Aspergillus species, with Aspergillus fumigatus at the forefront, have demonstrated the capability to produce compounds holding substantial promise in anti-cancer therapeutics. Gliotoxin, one such compound, emerges as a notable agent inducing apoptosis in lung cancer cells while impeding tumor growth. Furthermore, Emericellamide A, derived from Aspergillus nidulans, exhibits significant cytotoxicity against lung cancer cells. Serotonin, sourced from Aspergillus terreus, has also been proven to exert cytotoxic effects on lung cancer cells. Cycloopiazonic acid, identified in Aspergillus flavus, has demonstrated cytotoxicity against lung cancer cells, adding to the diverse arsenal of potential anti-cancer agents. The inhibitory effects on cancer cells extend beyond mere cytotoxicity, involving processes such as apoptosis, regulation of angiogenesis, immune modulation, and suppression of proliferation. Despite the promising array of anti-cancer compounds presented by Aspergillus fungi, significant challenges persist in their identification, scalable production, and understanding of their interactions with existing therapeutic modalities. Addressing these challenges necessitates collaborative efforts, fostering synergy among researchers, clinicians, and industry stakeholders. Research into the pharmacological repertoire offered by Aspergillus fungi can only be successful with the concerted efforts of researchers in order to determine the best possible treatment options for lung cancer, leveraging the wide variety of therapeutic options available.

Keywords

Main Subjects


  1. Peres MA, Macpherson LM, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral diseases: a global public health challenge. The Lancet. 2019;394(10194):249-60.
  2. Asouli A, Sadr S, Mohebalian H, Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol. 2023;68(2):385-92.
  3. Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anticancer Agents Med Chem. 2023.
  4. Sadr S, Yousefsani Z, Simab PA, Alizadeh hJR, Lotfalizadeh a, Borji H. Trichinella spiralis as a Potential Antitumor Agent: An Update. World's Veterinary Journal. 2023;13:65-74.
  5. Guan W, Zhang X, Wang X, Lu S, Yin J, Zhang J. Employing Parasite Against Cancer: A Lesson From the Canine Tapeworm Echinococcus Granulocus. Front Pharmacol. 2019;10:1137.
  6. Elhasawy FA, Ashour DS, Elsaka AM, Ismail HI. The Apoptotic Effect of Trichinella spiralis Infection Against Experimentally Induced Hepatocellular Carcinoma. Asian Pac J Cancer Prev. 2021;22(3):935-46.
  7. Sadr S, Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. Current Cancer Therapy Reviews. 2023;19(4):292-7.
  8. Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anti-Cancer Agents in Medicinal Chemistry. 2023.
  9. Momenah A, Hariri S, Abdel-razik N, Bantun F, Khan S, Alghamdi S, et al. Aspergillus fumigatus-Mediated Biosynthesis of Silver Nanoparticles Efficiency, Characterization, and Antibacterial Activity Against Different Human Pathogens. Egyptian Academic Journal of Biological Sciences C, Physiology and Molecular Biology. 2023;15(1):353-64.
  10. Zaid R, Koren R, Kligun E, Gupta R, Leibman-Markus M, Mukherjee PK, et al. Gliotoxin, an Immunosuppressive Fungal Metabolite, Primes Plant Immunity: Evidence from Trichoderma virens-Tomato Interaction. mBio. 2022;13(4):e0038922.
  11. Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, et al. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit Rev Microbiol. 2016;42(3):454-73.
  12. Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. European Journal of Medicinal Chemistry. 2020;202:112502.
  13. Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nature Reviews Microbiology. 2019;17(3):167-80.
  14. Nadumane V, Venkatachalam P, Gajaraj B. Aspergillus applications in cancer research. New and future developments in microbial biotechnology and bioengineering: Elsevier; 2016. p. 243-55.
  15. Kittakoop P, Mahidol C, Ruchirawat S. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Current topics in medicinal chemistry. 2014;14(2):239-52.
  16. Wu Z, Li S, Zhu X. The Mechanism of Stimulating and Mobilizing the Immune System Enhancing the Anti-Tumor Immunity. Front Immunol. 2021;12:682435.
  17. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799-820.
  18. Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel). 2017;9(4).
  19. Dai X, Sun Y, Zhang T, Ming Y, Hongwei G. An overview on natural farnesyltransferase inhibitors for efficient cancer therapy. J Enzyme Inhib Med Chem. 2020;35(1):1027-44.
  20. Bagchi S, Rathee P, Jayaprakash V, Banerjee S. Farnesyl transferase inhibitors as potential anticancer agents. Mini reviews in medicinal chemistry. 2018;18(19):1611-23.
  21. Lee JS, Oh Y, Lee JS, Park JH, Shin JK, Han JH, et al. Combination Treatment Using Pyruvate Kinase M2 Inhibitors for the Sensitization of High Density Triple-negative Breast Cancer Cells. In Vivo. 2022;36(5):2105-15.
  22. Vigushin DM, Mirsaidi N, Brooke G, Sun C, Pace P, Inman L, et al. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol. 2004;21(1):21-30.
  23. Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, et al. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116-29.
  24. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal transduction and targeted therapy. 2021;6(1):201.
  25. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309.
  26. Nedeljkovic M, Damjanovic A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells. 2019;8(9).
  27. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017;7(3):339-48.
  28. Kupeli Akkol E, Genc Y, Karpuz B, Sobarzo-Sanchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel). 2020;12(7).
  29. Yazbeck V, Alesi E, Myers J, Hackney MH, Cuttino L, Gewirtz DA. An overview of chemotoxicity and radiation toxicity in cancer therapy. Adv Cancer Res. 2022;155:1-27.
  30. De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13.
  31. McClure JJ, Li X, Chou CJ. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics. Adv Cancer Res. 2018;138:183-211.
  32. Prager GW, Braga S, Bystricky B, Qvortrup C, Criscitiello C, Esin E, et al. Global cancer control: responding to the growing burden, rising costs and inequalities in access. ESMO Open. 2018;3(2):e000285.
  33. El-Hawary SS, Moawad AS, Bahr HS, Abdelmohsen UR, Mohammed R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020;10(37):22058-79.
  34. Li YX, Himaya SW, Dewapriya P, Zhang C, Kim SK. Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar Drugs. 2013;11(12):5063-86.
  35. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules. 2013;18(9):11338-76.
  36. Kushveer J, Rashmi M, Sarma V. Bioactive compounds from marine-derived fungi and their potential applications. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology: Elsevier; 2021. p. 91-173.
  37. Gupta S, Choudhary M, Singh B, Singh R, Dhar MK, Kaul S. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. Biocatalysis and Agricultural Biotechnology. 2022;39.
  38. Glynn SA, O'Sullivan D, Eustace AJ, Clynes M, O'Donovan N. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells. BMC cancer. 2008;8:1-9.
  39. Li H, Gao T, Wang J, Tian S, Yuan X, Zhu H. Structural identification and antitumor activity of the extracellular polysaccharide from Aspergillus terreus. Process Biochemistry. 2016;51(10):1714-20.
  40. Uka V, Moore GG, Arroyo-Manzanares N, Nebija D, De Saeger S, Diana Di Mavungu J. Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS. Toxins (Basel). 2017;9(1).
  41. Hleba L, Hlebova M, Kovacik A, Petrova J, Maskova Z, Cubon J, et al. Use of MALDI-TOF MS to Discriminate between Aflatoxin B1-Producing and Non-Producing Strains of Aspergillus flavus. Molecules. 2022;27(22).
  42. Youssef FS, Singab ANB. An Updated Review on the Secondary Metabolites and Biological Activities of Aspergillus ruber and Aspergillus flavus and Exploring the Cytotoxic Potential of Their Isolated Compounds Using Virtual Screening. Evid Based Complement Alternat Med. 2021;2021:8860784.
  43. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al. Potential of anti-cancer activity of secondary metabolic products from marine fungi. Journal of Fungi. 2021;7(6):436.
  44. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al. Potential of Anti-Cancer Activity of Secondary Metabolic Products from Marine Fungi. J Fungi (Basel). 2021;7(6).
  45. Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. Phytomedicine. 2019;64:153081.
  46. Antipova TV, Zaitsev KV, Oprunenko YF, Ya Zherebker A, Rystsov GK, Zemskova MY, et al. Austalides V and W, new meroterpenoids from the fungus Aspergillus ustus and their antitumor activities. Bioorg Med Chem Lett. 2019;29(22):126708.
  47. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007;35(4):495-516.
  48. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nature reviews Molecular cell biology. 2020;21(11):678-95.
  49. Kim YS, Kim SK, Park SJ. Apoptotic effect of demethoxyfumitremorgin C from marine fungus Aspergillus fumigatus on PC3 human prostate cancer cells. Chem Biol Interact. 2017;269:18-24.
  50. Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422.
  51. Montano DE, Voigt K. Host Immune Defense upon Fungal Infections with Mucorales: Pathogen-Immune Cell Interactions as Drivers of Inflammatory Responses. J Fungi (Basel). 2020;6(3).
  52. Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, Crews CM. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci U S A. 1997;94(12):6099-103.
  53. Caon I, Bartolini B, Parnigoni A, Carava E, Moretto P, Viola M, et al. Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol. 2020;62:9-19.
  54. Zhu J, Bultynck G, Luyten T, Parys JB, Creemers JW, Van de Ven WJ, et al. Curcumin affects proprotein convertase activity: Elucidation of the molecular and subcellular mechanism. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(8):1924-35.
  55. Fan M, Nath AK, Tang Y, Choi YJ, Debnath T, Choi EJ, et al. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds. Mar Drugs. 2018;16(5).
  56. Demain AL. REVIEWS: The business of biotechnology. Industrial biotechnology. 2007;3(3):269-83.
  57. Steinbach WJ, Stevens DA, Denning DW. Combination and sequential antifungal therapy for invasive aspergillosis: review of published in vitro and in vivo interactions and 6281 clinical cases from 1966 to 2001. Clinical Infectious Diseases. 2003;37(3):188-S244.
  58. Wang YQ, Miao ZH. Marine-derived angiogenesis inhibitors for cancer therapy. Mar Drugs. 2013;11(3):903-33.
  59. Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med Mycol. 2009;47 Suppl 1(Suppl 1):S97-103.
  60. Ye W, Liu T, Zhang W, Zhang W. The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int J Mol Sci. 2021;22(24).
  61. Guruceaga X, Perez-Cuesta U, Pellon A, Cendon-Sanchez S, Pelegri-Martinez E, Gonzalez O, et al. Aspergillus fumigatus fumagillin contributes to host cell damage. Journal of Fungi. 2021;7(11):936.
  62. Esa R, Steinberg E, Dagan A, Yekhtin Z, Tischenko K, Benny O. Newly synthesized methionine aminopeptidase 2 inhibitor hinders tumor growth. Drug Delivery and Translational Research. 2023;13(5):1170-82.
  63. Gerber DE, Putnam WC, Fattah FJ, Kernstine KH, Brekken RA, Pedrosa I, et al. Concentration-dependent Early Antivascular and Antitumor Effects of Itraconazole in Non–Small Cell Lung Cancer. Clinical Cancer Research. 2020;26(22):6017-27.
  64. Poves-Alvarez R, Cano-Hernandez B, Balbas-Alvarez S, Roman-Garcia P, Heredia-Rodriguez M, Gomez-Sanchez E, et al. Antifungal treatment with echinocandins: a 10-year clinical experience. Rev Esp Quimioter. 2017;30(6):413-21.
  65. Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res. 2023;48:259-73.
  66. Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities. Chemotherapy. 2021;66(5-6):179-91.
  67. Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, et al. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms. 2023;11(3).
  68. Zhang W, Chen Y-H, Chen P, Yang C-H, Wu X, Luo L. Comprehensive Study on the Chemical Profile and Anti-Tumor Activity of Secondary Metabolites Produced by Aspergillus niger. Current Pharmaceutical Analysis. 2022;18(1):141-60.
  69. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Uthandi S, et al. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PloS one. 2017;12(10):e0186234.
  70. Amg D. Fungal mycotoxins and natural antioxidants: Two sides of the same coin and significance in food safety. Microbial Biosystems. 2019;4(1):1-16.
  71. Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer. 2023;1878(4):188906.
  72. Spadola G, Sanna V, Bartoli J, Carcelli M, Pelosi G, Bisceglie F, et al. Thiosemicarbazone nano-formulation for the control of Aspergillus flavus. Environ Sci Pollut Res Int. 2020;27(16):20125-35.
  73. Yunianta, Astuti A, Mawardi NK, Darini MT, Sastrohartono H, Khusnan, et al. The Effect of Nano-bentonite Supplementation on Reducing the Toxicity of Aflatoxin B1 in Kampung Unggul Balitbangtan Chickens’ Diet. J World Poult Res. 2023;13(2):244-252.
  74. Hassan AA, Oraby NH, El-mesalamy MM, Sayed-ElAhl RMH. Effect of Hybrid Nanomaterial of Copper-Chitosan against Aflatoxigenic Fungi in Poultry Feed. J World Poult Res. 2022;12(3):157-164.
  75. Lauruschkat CD, Einsele H, Loeffler J. Immunomodulation as a Therapy for Aspergillus Infection: Current Status and Future Perspectives. J Fungi (Basel). 2018;4(4).