Novel drug delivery systems for combating H. pylori: A brief review

Document Type : Review Article

Authors

1 Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 1Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

10.32592/ARI.2024.79.5.903

Abstract

Helicobacter pylori infection stands out as a primary cause of gastritis, with the alarming potential to progress into gastric cancer if left unaddressed. However, the efficacy of conventional treatments is undermined by the escalating challenge of antibiotic resistance and the necessity for complex multi-drug and high-dose therapeutic regimens. Complicating matters further, factors like biofilm formation, efflux pumps, and gene mutations significantly heighten the risk of treatment failure. In light of these formidable obstacles, contemporary drug delivery systems emerge as crucial allies in the battle against H. pylori. These advanced systems offer key advantages, such as enhanced drug protection, controlled release, and targeted delivery to specific tissues. Nanoparticles, in particular, hold promise in combating H. pylori infection through diverse mechanisms, ranging from direct drug delivery into the bacteria to the destruction of bacterial walls and the generation of free radicals. This review navigates through the current therapeutic landscape, shedding light on both existing and evolving treatment options. It delves into the transformative potential of novel drug delivery systems, including micro- and nanoparticles, as instrumental players in the intricate realm of H. pylori infection treatment. By exploring the intricate interplay between infection dynamics and cutting-edge delivery technologies, this review aims to carve a path towards more effective and tailored interventions against this persistent threat. As we learn more about H. pylori infection, new treatments and better ways to deliver drugs offer hope for a more effective and personalized approach to fighting this persistent health problem. This dynamic intersection of microbiology and nanotechnology exemplifies the relentless pursuit of innovative solutions to safeguard against the formidable challenges posed by H. pylori, ultimately offering hope for improved patient outcomes and a healthier future.

Keywords

Main Subjects


  1. Adebisi A, Conway BR. Gastroretentive microparticles for drug delivery applications. Journal of microencapsulation. 2011;28(8):689-708.
  2. de Souza MP, de Camargo BA, Sposito L, Fortunato GC, Carvalho GC, Marena GD, Meneguin AB, Bauab TM, Chorilli M. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Critical Reviews in Microbiology. 2021;47(4):435-60.
  3. Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-induced gastric infections: from pathogenesis to novel therapeutic approaches using silver nanoparticles. Pharmaceutics. 2022;14(7):1463.
  4. Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era—searching for new drug targets. Applied Microbiology and Biotechnology. 2020;104(23):9891-905.
  5. Selvarajan V, Obuobi S, Ee PL. Silica nanoparticles—a versatile tool for the treatment of bacterial infections. Frontiers in Chemistry. 2020;8:602.
  6. Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. Journal of Controlled Release. 2016;224:86-102.
  7. Papastergiou V, Georgopoulos SD, Karatapanis S. Treatment of Helicobacter pylori infection: Past, present and future. World journal of gastrointestinal pathophysiology. 2014;5(4):392.
  8. Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2016;98:76-89.
  9. Graham DY, Lu H, Shiotani A. Vonoprazan‐containing Helicobacter pylori triple therapies contribution to global antimicrobial resistance. Journal of Gastroenterology and Hepatology. 2021;36(5):1159-63.
  10. Ribaldone DG, Fagoonee S, Astegiano M, Durazzo M, Morgando A, Sprujevnik T, Giordanino C, Baronio M, De Angelis C, Saracco GM, Pellicano R. Rifabutin-based rescue therapy for Helicobacter pylori eradication: a long-term prospective study in a large cohort of difficult-to-treat patients. Journal of Clinical Medicine. 2019;8(2):199.
  11. Modak JK, Tikhomirova A, Gorrell RJ, Rahman MM, Kotsanas D, Korman TM, Garcia-Bustos J, Kwok T, Ferrero RL, Supuran CT, Roujeinikova A. Anti-Helicobacter pylori activity of ethoxzolamide. Journal of enzyme inhibition and medicinal chemistry. 2019;34(1):1660-7.
  12. Wang G, Pang J, Hu X, Nie T, Lu X, Li X, Wang X, Lu Y, Yang X, Jiang J, Li C. Daphnetin: A novel anti-Helicobacter pylori agent. International journal of molecular sciences. 2019;20(4):850.
  13. Ohishi T, Masuda T, Abe H, Hayashi C, Adachi H, Ohba SI, Igarashi M, Watanabe T, Mimuro H, Amalia E, Inaoka DK. Monotherapy with a novel intervenolin derivative, AS‐1934, is an effective treatment for Helicobacter pylori infection. Helicobacter. 2018;23(2):e12470.
  14. Salillas S, Sancho J. Flavodoxins as novel therapeutic targets against Helicobacter pylori and other gastric pathogens. International Journal of Molecular Sciences. 2020;21(5):1881.
  15. Choudhury A, Ortiz P, Kearney CM. In vitro inhibition of H. pylori in a preferential manner using bioengineered L. lactis releasing guided antimicrobial peptides. bioRxiv. 2021.
  16. Ji J, Yang H. Using probiotics as supplementation for Helicobacter pylori antibiotic therapy. International journal of molecular sciences. 2020;21(3):1136.
  17. Judaki A, Rahmani A, Feizi J, Asadollahi K, Hafezi Ahmadi MR. Curcumin in combination with triple therapy regimes ameliorates oxidative stress and histopathologic changes in chronic gastritis-associated Helicobacter pylori infection. Arquivos de gastroenterologia. 2017;54:177-82.
  18. Zhong Y, Tang L, Deng Q, Jing L, Zhang J, Zhang Y, Yu F, Ou Y, Guo S, Huang B, Cao H. Unraveling the novel effect of patchouli alcohol against the antibiotic resistance of Helicobacter pylori. Frontiers in Microbiology. 2021;12:674560.
  19. Wu T, Wang L, Gong M, Lin Y, Xu Y, Ye L, Yu X, Liu J, Liu J, He S, Zeng H. Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition. Journal of Magnetism and Magnetic Materials. 2019;485:95-104.
  20. Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, Wei X, Zhou Z, Obonyo M, Fang RH, Gao W. Inhibition of pathogen adhesion by bacterial outer membrane‐coated nanoparticles. Angewandte Chemie International Edition. 2019;58(33):11404-8.
  21. Sutton P, Boag JM. Status of vaccine research and development for Helicobacter pylori. Vaccine. 2019;37(50):7295-9.
  22. Ruiz-Rico M, Moreno Y, Barat JM. In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori. World Journal of Microbiology and Biotechnology. 2020;36(1):1-9.
  23. Malek S, Pirouzifard MK, Yadegar A, Bonab SM, Jannat B, Moslemi M. Synthesis, Characterization, and Evaluation of Anti-Helicobacter Activity of Chitosan and Pectin Microparticles Containing Zataria multiflora Extract In Vitro. Applied Food Biotechnology. 2022;9(4):321-31.
  24. Lin Z, Gao C, Wang D, He Q. Bubble‐propelled Janus gallium/zinc micromotors for the active treatment of bacterial infections. Angewandte Chemie International Edition. 2021;60(16):8750-4.
  25. Westmeier D, Posselt G, Hahlbrock A, Bartfeld S, Vallet C, Abfalter C, Docter D, Knauer SK, Wessler S, Stauber RH. Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori. Nanoscale. 2018;10(3):1453-63.
  26. Maisel K, Ensign L, Reddy M, Cone R, Hanes J. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. Journal of Controlled Release. 2015;197:48-57.
  27. Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Advanced drug delivery reviews. 2001;47(1):39-54.
  28. Sharaf M, Arif M, Khan S, Abdalla M, Shabana S, Chi Z, Liu C. Co-delivery of hesperidin and clarithromycin in a nanostructured lipid carrier for the eradication of Helicobacter pylori in vitro. Bioorganic Chemistry. 2021;112:104896.
  29. Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, Hu P, Hu H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. Journal of Controlled Release. 2019;300:52-63.
  30. Lopes-de-Campos D, Pinto RM, Lima SA, Santos T, Sarmento B, Nunes C, Reis S. Delivering amoxicillin at the infection site–a rational design through lipid nanoparticles. International Journal of Nanomedicine. 2019;14:2781-95.
  31. Arif M, Sharaf M, Samreen, Dong Q, Wang L, Chi Z, Liu CG. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. Journal of Biomaterials Science, Polymer Edition. 2021;32(18):2423-47.
  32. Arif M, Ahmad R, Sharaf M, Muhammad J, Abdalla M, Eltayb WA, Liu CG. Antibacterial and antibiofilm activity of mannose-modified chitosan/PMLA nanoparticles against multidrug-resistant Helicobacter pylori. International Journal of Biological Macromolecules. 2022;223:418-32.
  33. Khoshnood S, Negahdari B, Kaviar VH, Sadeghifard N, Abdullah MA, El-Shazly M, Haddadi MH. Amoxicillin-docosahexaenoic acid encapsulated chitosan-alginate nanoparticles as a delivery system with enhanced biocidal activities against Helicobacter pylori and improved ulcer healing. Frontiers in Microbiology. 2023;14:1083330.
  34. Yang SJ, Huang CH, Yang JC, Wang CH, Shieh MJ. Residence time-extended nanoparticles by magnetic field improve the eradication efficiency of Helicobacter pylori. ACS Applied Materials & Interfaces. 2020;12(49):54316-27.
  35. Arif M, Sharaf M, Samreen, Khan S, Chi Z, Liu CG. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. Journal of Biomaterials Science, Polymer Edition. 2021;32(6):813-32.
  36. Cong Y, Geng J, Wang H, Su J, Arif M, Dong Q, Chi Z, Liu C. Ureido-modified carboxymethyl chitosan-graft-stearic acid polymeric nano-micelles as a targeted delivering carrier of clarithromycin for Helicobacter pylori: Preparation and in vitro evaluation. International journal of biological macromolecules. 2019;129:686-92.
  37. Almeida Furquim de Camargo B, Soares Silva DE, Noronha da Silva A, Campos DL, Machado Ribeiro TR, Mieli MJ, Borges Teixeira Zanatta M, Bento da Silva P, Pavan FR, Gallina Moreira C, Resende FA. New silver (I) coordination compound loaded into polymeric nanoparticles as a strategy to improve in vitro anti-Helicobacter pylori activity. Molecular Pharmaceutics. 2020;17(7):2287-98.
  38. Luo M, Jia YY, Jing ZW, Li C, Zhou SY, Mei QB, Zhang BL. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids and Surfaces B: Biointerfaces. 2018;164:11-9.
  39. Liu H, Liu W, Tan Z, Zeng Z, Yang H, Luo S, Wang L, Xi T, Xing Y. Promoting immune efficacy of the oral Helicobacter pylori vaccine by HP55/PBCA nanoparticles against the gastrointestinal environment. Molecular Pharmaceutics. 2018;15(8):3177-86.
  40. Hwang J, Mros S, Gamble AB, Tyndall JD, McDowell A. Improving antibacterial activity of a HtrA protease inhibitor JO146 against Helicobacter pylori: a novel approach using microfluidics-engineered PLGA nanoparticles. Pharmaceutics. 2022;14(2):348.
  41. Alam J, Dilnawaz F, Sahoo SK, Singh DV, Mukhopadhyay AK, Hussain T, Pati S. Curcumin encapsulated into biocompatible co-polymer PLGA nanoparticle enhanced anti-gastric cancer and anti-Helicobacter Pylori effect. Asian Pacific journal of cancer prevention: APJCP. 2022;23(1):61.
  42. Zhang J, Chen Z, Kong J, Liang Y, Chen K, Chang Y, Yuan H, Wang Y, Liang H, Li J, Mao M. Fullerenol nanoparticles eradicate Helicobacter pylori via pH-responsive peroxidase activity. ACS applied materials & interfaces. 2020;12(26):29013-29023.
  43. Zhang Y, Li H, Wang Q, Hao X, Li H, Sun H, Han L, Zhang Z, Zou Q, Sun X. Rationally designed self‐assembling nanoparticles to overcome mucus and epithelium transport barriers for oral vaccines against Helicobacter pylori. Advanced Functional Materials. 2018;28(33):1802675.
  44. Zou Y, Chen X, Sun Y, Li P, Xu M, Fang P, Zhang S, Yuan G, Deng X, Hu H. Antibiotics-free nanoparticles eradicate Helicobacter pylori biofilms and intracellular bacteria. Journal of Controlled Release. 2022;348:370-85.
  45. Gopinath V, Priyadarshini S, MubarakAli D, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J. Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arabian journal of chemistry. 2019;12(1):33-40.
  46. Abd El-Moaty HI, Soliman NA, Hamad RS, Ismail EH, Sabry DY, Khalil MM. Comparative therapeutic effects of Pituranthos tortuosus aqueous extract and phyto-synthesized gold nanoparticles on Helicobacter pylori, diabetic and cancer proliferation. South African Journal of Botany. 2021;139:167-74.
  47. Al-Radadi NS. Microwave assisted green synthesis of Fe@ Au core–shell NPs magnetic to enhance olive oil efficiency on eradication of helicobacter pylori (life preserver). Arabian Journal of Chemistry. 2022;15(5):103685.
  48. Gopalakrishnan V, Masanam E, Ramkumar VS, Baskaraligam V, Selvaraj G. Influence of N‐acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori: A potential strategy to combat biofilm formation. Journal of basic microbiology. 2020;60(3):207-15.
  49. Al-Bahrani RM, Radif HM, Albaayit SF. Evaluation of potent silver nanoparticles production from Agaricus bisporus against Helicobacter pylori. Pakistan Journal of Agricultural Sciences. 2020;57(4):1197–1201.
  50. Saravanakumar K, Chelliah R, MubarakAli D, Oh DH, Kathiresan K, Wang MH. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Scientific reports. 2019;9(1):5787.
  51. Sampath G, Shyu DJ, Rameshkumar N, Krishnan M, Sivasankar P, Kayalvizhi N. Synthesis and characterization of pyrogallol capped silver nanoparticles and evaluation of their in vitro anti-bacterial, anti-cancer profile against AGS cells. Journal of Cluster Science. 2021;32:549-57.
  52. Naseer M, Ramadan R, Xing J, Samak NA. Facile green synthesis of copper oxide nanoparticles for the eradication of multidrug resistant Klebsiella pneumonia and Helicobacter pylori biofilms. International Biodeterioration & Biodegradation. 2021;159:105201.
  53. Attia HG, Albarqi HA, Said IG, Alqahtani O, Raey MA. Synergistic effect between amoxicillin and zinc oxide nanoparticles reduced by oak gall extract against Helicobacter pylori. Molecules. 2022;27(14):4559.
  54. Sharaf S, Abbas HS, Ismaeil TA. Characterization of spirugenic iron oxide nanoparticles and their antibacterial activity against multidrug-resistant Helicobacter pylori. Egyptian Journal of Phycology. 2019;20(1):1-28.
  55. Zhang W, Zhou Y, Fan Y, Cao R, Xu Y, Weng Z, Ye J, He C, Zhu Y, Wang X. Metal–organic‐framework‐based hydrogen‐release platform for multieffective Helicobacter pylori targeting therapy and intestinal flora protective capabilities. Advanced Materials. 2022;34(2):2105738.
  56. Gupta S, Tiwari A, Jain U, Chauhan N. Synergistic effect of 2D material coated Pt nanoparticles with PEDOT polymer on electrode surface interface for a sensitive label free Helicobacter pylori CagA (Ag-Ab) immunosensing. Materials Science and Engineering: C. 2019;103:109733.