Prenatal Exposure to L-Citrulline Has Positive Effects on Reflexive Motor Behavior in Newborn Mice

Document Type : Original Articles

Authors

1 Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

L-citrulline (L-cit) is a nonessential amino acid that interacts with the veracity of neurotransmitters in the brain and might have a positive effect on fetal growth. However, there is no information about the possible effect of L-cit on reflexive motor behavior. Thus, this study aimed to determine the effects of prenatal exposure to L-cit on reflexive motor behavior in mice offspring. Forty pregnant female mice were allocated into four groups. In the control group, mice received water, while in groups 2-4, female mice orally gavage with L-cit (25, 50, and 100 mg/kg) at 5, 8, 11, 14, and 17 days of gestation (GD). Following delivery, pups were selected, and reflexive motor behaviors were determined using ambulation, hind-limb foot angle, surface righting, hind-limb strength, grip strength, front limb suspension, and negative geotaxis tests. Also, serum Nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were determined. Based on the findings, maternal exposure to L-cit improved ambulation score, hind-limb suspension score, grip strength, and front-limb suspension in offspring (P<0.05). Prenatal exposure to L-cit decreased surface righting, hind-limb foot angle, and negative geotaxis in offspring (P<0.05). L-cit decreased immobility time in forced swimming test (FST), tail suspension test (TST), and increased number of squares crossed in the open field test (OFT) and spending time on rotarod on postpartum mice (P<0.05). L-cit increased serum NO levels (P<0.05). L-cit decreased blood MDA and increased SOD and GPx levels in offspring (P<0.05). Findings revealed that L-cit improves postpartum behaviors in mice and reflexive motor in their pups.

Keywords


  1. Yabuki Y, Shioda N, Yamamoto Y, Shigano M, Kumagai K, Morita M, et al. Oral L-citrulline administration improves memory deficits following transient brain ischemia through cerebrovascular protection. Brain Res. 2013;1520:157-67.
  2. Tain YL, Sheen JM, Chen CC, Yu HR, Tiao MM, Kuo HC, et al. Maternal citrulline supplementation prevents prenatal dexamethasone-induced programmed hypertension. Free Radic Res. 2014;48(5):580-6.
  3. Eshreif A, Al Batran R, Jamieson KL, Darwesh AM, Gopal K, Greenwell AA, et al. l-Citrulline supplementation improves glucose and exercise tolerance in obese male mice. Exp Physiol. 2020;105(2):270-81.
  4. Gomez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, et al. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity. 2021;7(1):35.
  5. Theodosis-Nobelos P, Papagiouvannis G, Tziona P, Rekka EA. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol Biol Rep. 2021;48(9):6539-50.
  6. Tsuboi T, Maeda M, Hayashi T. Administration of L-arginine plus L-citrulline or L-citrulline alone successfully retarded endothelial senescence. PLoS One. 2018;13(2):e0192252.
  7. Svirsky N, Levy S, Avitsur R. Prenatal exposure to selective serotonin reuptake inhibitors (SSRI) increases aggression and modulates maternal behavior in offspring mice. Dev Psychobiol. 2016;58(1):71-82.
  8. Gemmel M, Bogi E, Ragan C, Hazlett M, Dubovicky M, van den Hove DL, et al. Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome. Neurosci Biobehav Rev. 2018;85:102-16.
  9. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1-16.
  10. Tain YL, Huang LT, Lee CT, Chan JY, Hsu CN. Maternal citrulline supplementation prevents prenatal N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced programmed hypertension in rats. Biol Reprod. 2015;92(1):7.
  11. Bourdon A, Parnet P, Nowak C, Tran NT, Winer N, Darmaun D. L-Citrulline Supplementation Enhances Fetal Growth and Protein Synthesis in Rats with Intrauterine Growth Restriction. J Nutr. 2016;146(3):532-41.
  12. Giorno TBS, Moreira I, Rezende CM, Fernandes PD. New (beta)N-octadecanoyl-5-hydroxytryptamide: antinociceptive effect and possible mechanism of action in mice. Sci Rep. 2018;8(1):10027.
  13. Hassan-Danboyi E, Jimoh A, Alhassan A, Danboyi T, Mohammed K, Dubo A, et al. Antioxidant effects of L-citrulline supplementation in high-fat diet- and dexamethasone-induced Type-2 diabetes mellitus in wistar rats (Rattus norvegicus). 2021;9(2):95-102.
  14. Williams E, Scott JP. The Development of Social Behavior Patterns in the Mouse, in Relation To Natural Periods 1). Behaviour. 1954;6(1):35-64.
  15. Feather-Schussler DN, Ferguson TS. A Battery of Motor Tests in a Neonatal Mouse Model of Cerebral Palsy. J Vis Exp. 2016(117).
  16. Heyser CJ. Assessment of developmental milestones in rodents. Curr Protoc Neurosci. 2004;Chapter 8:Unit 8 18.
  17. Corti S. Grip strength. Experimental protocols for SMA animal models, TREAT-NMD. 2017.
  18. Venerosi A, Ricceri L, Scattoni ML, Calamandrei G. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups. Environ Health. 2009;8:12.
  19. Nasehi M, Mohammadi-Mahdiabadi-Hasani MH, Ebrahimi-Ghiri M, Zarrindast MR. Additive interaction between scopolamine and nitric oxide agents on immobility in the forced swim test but not exploratory activity in the hole-board. Psychopharmacology (Berl). 2019;236(11):3353-62.
  20. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29(4-5):571-625.
  1. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85(3):367-70.
  2. Alimohammadi S, Hosseini MS, Behbood L. Prenatal Exposure to Zinc Oxide Nanoparticles Can Induce Depressive-Like Behaviors in Mice Offspring. Int J Pept Res Ther. 2019;25(1):401-9.
  3. Donato F, de Gomes MG, Goes AT, Filho CB, Del Fabbro L, Antunes MS, et al. Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Res Bull. 2014;104:19-26.
  4. Eltokhi A, Kurpiers B, Pitzer C. Comprehensive characterization of motor and coordination functions in three adolescent wild-type mouse strains. Sci Rep. 2021;11(1):6497.
  5. Jalili C, Ahmadi S, Roshankhah S, Salahshoor M. Effect of Genistein on reproductive parameter and serum nitric oxide levels in morphine-treated mice. Int J Reprod Biomed. 2016;14(2):95-102.
  6. Ito Y, Ohkubo T, Asano Y, Hattori K, Shimazu T, Yamazato M, et al. Nitric oxide production during cerebral ischemia and reperfusion in eNOS- and nNOS-knockout mice. Curr Neurovasc Res. 2010;7(1):23-31.
  7. Vadivel A, Aschner JL, Rey-Parra GJ, Magarik J, Zeng H, Summar M, et al. L-citrulline attenuates arrested alveolar growth and pulmonary hypertension in oxygen-induced lung injury in newborn rats. Pediatr Res. 2010;68(6):519-25.
  8. Lee YC, Su YT, Liu TY, Tsai CM, Chang CH, Yu HR. L-Arginine and L-Citrulline Supplementation Have Different Programming Effect on Regulatory T-Cells Function of Infantile Rats. Front Immunol. 2018;9:2911.
  9. George EM, Granger JP. Mechanisms and potential therapies for preeclampsia. Curr Hypertens Rep. 2011;13(4):269-75.
  10. Nguyen AT, Armstrong EA, Yager JY. Neurodevelopmental Reflex Testing in Neonatal Rat Pups. J Vis Exp. 2017(122).
  11. Moreno H, de Brugada I. Prenatal dietary choline supplementation modulates long-term memory development in rat offspring. Nutr Neurosci. 2021;24(6):417-25.
  12. Lameu C, Trujillo CA, Schwindt TT, Negraes PD, Pillat MM, Morais KL, et al. Interactions between the NO-citrulline cycle and brain-derived neurotrophic factor in differentiation of neural stem cells. J Biol Chem. 2012;287(35):29690-701.
  1. Liu J, Meng F, Dai J, Wu M, Wang W, Liu C, et al. The BDNF-FoxO1 Axis in the medial prefrontal cortex modulates depressive-like behaviors induced by chronic unpredictable stress in postpartum female mice. Mol Brain. 2020;13(1):91.
  2. Grover S, Avasthi A. Clinical Practice Guidelines for the management of depression in children and adolescents. Indian J Psychiatry. 2019;61(2):226-40.
  3. Chatterjee M, Jaiswal M, Palit G. Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of schizophrenia in rodents. ISRN Psychiatry. 2012;2012:595141.
  1. Oseni OA, Odesanmi OE, Oladele FC. Antioxidative and antidiabetic activities of watermelon (Citrullus lanatus) juice on oxidative stress in alloxan-induced diabetic male Wistar albino rats. Niger Med J. 2015;56(4):272-7.
  2. Liu Y, Fu X, Gou L, Li S, Lan N, Zheng Y, et al. L-citrulline protects against glycerol-induced acute renal failure in rats. Ren Fail. 2013;35(3):367-73.
  3. Ham DJ, Gleeson BG, Chee A, Baum DM, Caldow MK, Lynch GS, et al. L-Citrulline Protects Skeletal Muscle Cells from Cachectic Stimuli through an iNOS-Dependent Mechanism. PLoS One. 2015;10(10):e0141572.