Evaluation of Gene Expression of norA and norB Gene in Ciproflaxin and Levofloxacin Resistant Staphylococcus aureus

Document Type : Original Articles

Authors

Institute of Genetic Engineering and Biotechnology for Post Graduate Studies, University of Baghdad, Baghdad, Iraq

Abstract

The presence of efflux pumps genes in Staphylococcus aureus, such as norA and norB, is critical for ciprofloxacin and levofloxacin resistance. This study examined the efflux pump gene expression and activity in ciprofloxacin and levofloxacin-resistant S. aureus strains. Twenty clinical samples of wounds and burns were collected. S. aureus strains were tested using specific culture media. Antibiotic susceptibility testing was done using the disc diffusion method. After determining the disc diffusion method of ciprofloxacin and levofloxacin, Methicillin-resistant Staphylococcus aureus (MRSA) isolates were found in ten of the twenty clinical samples. The susceptibility of S. aureus in the study revealed 40% ciprofloxacin resistance and 20% levofloxacin resistance. The gene expression of norA and norB efflux pump genes was assessed using Real-Time PCR. The nor A gene was detected in all ciprofloxacin-resistant pathogens, and norA gene expression increased in samples treated with ciprofloxacin compared to samples not treated with ciprofloxacin results of a real-time PCR test. The norB gene was detected in resistant strains, and its expression increased, as was the case with the norA gene. The fold of gene expression of norB gene for the ten isolates ranged from (12.082 to 42.81 fold) and also this result was higher than the fold of norA gene (0.0036-34.05 fold). The research study discovered that efflux pump genes play a crucial role in ciprofloxacin and levofloxacin resistance. Also, when employed as a housekeeping gene in gene expression, the 16S rRNA gene produced excellent results.

Keywords

Main Subjects


  1. Mŀynarczyk A, Mŀynarczyk G, Jeljaszewicz J. The genome of Staphylococcus aureus: a review. Zent Bl Bakteriol. 1998;287(4):277-314.
  2. Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J. 2013;7:59.
  3. Koosha RZ, Hosseini HM, Aghdam EM, Tajandareh SG, Fooladi AAI. Distribution of tsst-1 and mecA genes in Staphylococcus aureus isolated from clinical specimens. Jundishapur J Microbiol. 2016;9(3).
  4. Mustapha M, Bukar-Kolo YM, Geidam YA, Gulani IA. Phenotypic and genotypic detection of methicillin-resistant Staphylococcus aureus in hunting dogs in Maiduguri metropolitan, Borno State, Nigeria. Vet World. 2016;9(5):501.
  5. Costa SS, Falcão C, Viveiros M, Machado D, Martins M, Melo-Cristino J, et al. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol. 2011;11(1):1-12.
  6. Savjani J, Gajjar A, Savjani K. Mechanisms of resistance: useful tool to design antibacterial agents for drug-resistant bacteria. Mini Rev Med Chem. 2009;9(2):194-205.
  7. Hassanzadeh S, Mashhadi R, Yousefi M, Askari E, Saniei M, Pourmand MR. Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates. Microb Pathog. 2017;111:71-4.
  8. Kosmidis C, Schindler BD, Jacinto PL, Patel D, Bains K, Seo SM, et al. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int J Antimicrob Agents. 2012;40(3):204-9.
  9. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2009;69(12):1555-623.
  10. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2001;45(6):1761-70.
  11. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223-9.
  12. Motallebi M, Jabalameli F, Asadollahi K, Taherikalani M, Emaneini M. Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microb Pathog. 2016;97:34-7.
  1. Noguchi N, Okada H, Narui K, Sasatsu M. Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microbial Drug Resist. 2004;10(3):197-203.
  2. Jo A, Ahn J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol. 2016;16(1):1-10.
  3. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.
  4. Couto I, Costa SS, Viveiros M, Martins M, Amaral L. Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide. J Antimicrob Chemother. 2008;62(3):504-13.
  5. Dheda K, Huggett J, Chang J, Kim L, Bustin S, Johnson M, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 2005;344(1):141-3.
  6. Pourmand MR, Yousefi M, Salami SA, Amini M. Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexahydroquinoline derivative by real-time PCR. Acta Med Iran. 2014:424-9.
  7. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-8.
  8. Ghosh S, Banerjee M. Methicillin resistance & inducible clindamycin resistance in Staphylococcus aureus. Indian J Med Res. 2016;143(3):362.
  9. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM. Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin‐resistant Staphylococcus aureus (MRSA). J Basic Microbiol. 2008;48(4):245-51.
  10. Tavakoli Z, Sahebjamee H, Pishkar L, Alimadadi Z, Noorbazargan H, Mirzaie A. Detection of efflux pump activity and gene expression among ciprofloxacin-resistant Staphylococcus aureus strains. World J Microbiol. 2019;12(3):294-304.
  11. Huet AA, Raygada JL, Mendiratta K, Seo SM, Kaatz GW. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology. 2008;154(10):3144-53.
  12. Jassim KA, Ghaima KK, Saadedin SMK. AdeABC efflux pump genes in multidrug resistant Acinetobacter baumannii isolates. Avicenna J Clin Microb Infec. 2016;3(4):40898-.
  13. Mirzaie A, Noorbazargan H, Rahmati H, Zandi M. A study of gene expression and activity of NorA efflux pump in clinical isolates of ciprofloxacin resistant staphylococcus aureus. J Babol Univ Med Sci. 2016;18(11):63-70.
  14. Rebouças EdL, Costa JJdN, Passos MJ, Passos JRdS, Hurk Rvd, Silva JRV. Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol. 2013;56(1):143-54.
  1. Ghaima KK, Khalaf ZS, Abdulhassan AA, Salman NY. Prevalence and antibiotic resistance of bacteria isolated from urinary tract infections of pregnant women in Baghdad hospitals. Biomed Pharmacol J. 2018;11(4):1989-94.
  2. Ogonowska P, Nakonieczna J. Validation of stable reference genes in Staphylococcus aureus to study gene expression under photodynamic treatment: a case study of SEB virulence factor analysis. Sci Rep. 2020;10(1):1-16.
  3. Moreno-Flores A, Potel-Alvarellos C, Otero-Fernández S, Álvarez-Fernández M. Phenotypic and genetic characteristics of fluoroquinolone-and methicillin-resistant Staphylococcus aureus. Enferm Infecc Microbiol Clin. 2018;36(7):403-8.