Association of Biofilm Inducer with blaVIM, blaIMP, and blaNDM in Pseudomonas aeruginosa Isolates

Document Type : Original Articles

Authors

Department of Biology, College of Science, Al-Mustansiriyah University, Ministry of Higher Education and Research, Baghdad 10001, Iraq

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous opportunistic organism that is hard to treat. This study aimed to investigate the association of blaVIM, blaIMP, and blaNDM prevalence with Cyclic di-GMP (c-di-GMP) in P. aeruginosa. To this end, 27 clinical isolates of P. aeruginosa were obtained from different hospitals in Baghdad, Iraq. The phenotypic detection of carbapenem and biofilm assays was performed by the M63 minimal medium, supplemented with glucose, magnesium sulfate. The polymerase chain reaction was utilized to detect carbapenem genes. The results showed that the isolates were highly resistant to Imipenem (37%) and Meropenem (63%). Imipenem (37%) and Meropenem (63%) demonstrated a moderate sensitivity against P. aeruginosa. The P. aeruginosa No.5 showed high resistance to carbapenem by blaVIM+, blaIMP+, and blaNDM+, followed by a robust biofilm confirmed with c-di-GMP levels and the twitching motility ability. Upon these findings, the use of antibiotics should be restricted to severe bacterial infections to avoid the rapid emergence of new resistant isolates, which leads to the hard treatment of infection with P. aeruginosa. It is highly recommended that these findings be notified for infectious control. Future studies can investigate the link between transferable resistant genes and c-di-GMP values.

Keywords

Main Subjects


  1. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48(12):4606-10.
  2. Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O’Toole GA. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol. 2010;13(4):207.
  3. Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007;51(12):4329-35.
  4. Jesudason MV, Kandathil A, Balaji V. Comparison of two methods to detect carbapenemase & metallo-beta-lactamase production in clinical isolates. Indian J Med Res. 2005;121(6):780.
  5. Henrichfreise B, Wiegand I, Sherwood KJ, Wiedemann B. Detection of VIM-2 metallo-β-lactamase in Pseudomonas aeruginosa from Germany. Antimicrob Agents Chemother. 2005;49(4):1668-9.
  6. Viedma E, Juan C, Villa J, Barrado L, Orellana MÁ, Sanz F, et al. VIM-2–producing multidrug-resistant Pseudomonas aeruginosa ST175 clone, Spain. Emerg Infect Dis. 2012;18(8):1235.
  7. Høiby N. Prospects for the prevention and control of pseudomonal infection in children with cystic fibrosis. Paediatr Drugs. 2000;2(6):451-63.
  8. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg E. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407(6805):762-4.
  9. Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol. 2007;189(14):5383-6.
  10. Cole SJ, Lee VT. Cyclic di-GMP signaling contributes to Pseudomonas aeruginosa-mediated catheter-associated urinary tract infection. J Bacteriol. 2015;198(1):91-7.
  11. Atlas RM, Brown AE, Parks LC. Laboratory manual of experimental microbiology: Mosby; 1995.
  12. CLSI. Performance standard for antimicrobial susceptibility testing. 2016.
  13. Wu M-C, Lin T-L, Hsieh P-F, Yang H-C, Wang J-T. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PloS One. 2011;6(8): 23500.
  14. Christensen GD, Simpson WA, Younger J, Baddour L, Barrett F, Melton D, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996-1006.
  15. Musafer HK, Kuchma SL, Naimie AA, Schwartzman JD, Al-Mathkhury HJF, O’Toole GA. Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa. Microb Ecol. 2014;68(1):111-20.
  16. Musafer H. Anti-Biofilm Strategy: Meropenem Modulates Biofilm Formation in Acinetobacter lwoffii. Pakistan J Biotechnol. 2018;15(4):879-82.
  17. Amikam D, Steinberger O, Shkolnik T, Ben-Ishai Z. The novel cyclic dinucleotide 3′-5′ cyclic diguanylic acid binds to p21 ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem J. 1995;311(3):921-7.
  18. Riera E, Cabot G, Mulet X, García-Castillo M, del Campo R, Juan C, et al. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011;66(9):2022-7.
  19. Enwuru N, Enwuru C, Ogbonnia S, Adepoju-Bello A. Metallo-β-lactamase production by Escherichia coli and Klebsiella species isolated from hospital and community subjects in Lagos, Nigeria. Nat Sci. 2011;9(11):1-5.
  20. Sardelic S, Pallecchi L, Punda-Polic V, Rossolini GM. Carbapenem-Resistant Pseudomonas aeruginosa–Carrying VIM-2 Metallo-β-Lactamase Determinants, Croatia. Emerg Infect Dis. 2003;9(8):1022.
  21. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416(6882):740-3.

22.          Potera C. Forging a link between biofilms and disease. American Association for the Advancement of Science; 1999.