Association between Atherogenic Index and Cholesterol to HDL Ratio in COVID-19 Patients During the Initial Phase of Infection

Document Type : Original Articles

Authors

1 Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq

2 Kirkuk University, Erbil International Hospital, Kirkuk, Iraq

3 University of Baghdad, College of Agriculture, Baghdad, Iraq

4 Kirkuk University, Kirkuk, Iraq

Abstract

This case-control study aimed to assess pathologic alteration in the serum levels of the atherogenic index, cholesterol to high-density lipoprotein (HDL) ratio, HDL cholesterol, total cholesterol, triglyceride, HbA1c, and glucose in 158 COVID-19 patients who were hospitalized in Erbil international hospital, Erbil, Iraq, between January and May 2020, in the early stage of infection. The patients were confirmed for SARS-CoV-2 on admission. The laboratory test results were compared between this group and a group of healthy individuals (n=158). A statistically significant difference was found between the studied factors in healthy controls and COVID-19 patients, except for low-density lipoprotein (LDL) cholesterol (P=0.13). In the case of COVID-19 patients, total levels of cholesterol and HDL cholesterol were significantly lower than controls (P<0.003). Triglyceride, VLDL cholesterol, atherogenic index, and total cholesterol to HDL ratio were found to be significantly higher in COVID-19 patients, compared to controls (P<0.005). Atherogenic index were found to be positively correlated with triglyceride (r=0.88, P=0.00), HbA1C (r=0.6, P=0.05), and glucose index (r= 0.62, P= 0.05), and the ratio of cholesterol to HDL (r=0.64, P=0.04). In contrast, no correlation was found between atherogenic index and cholesterol to HDL ratio in controls. The results of the current study indicated that risk factors for the cardiovascular disease increased in patients with COVID-19 infection, which included atherogenic index, cholesterol to HDL ratio, as well as the association between atherogenic index, and all were organized in one cluster. Therefore, lipids can perform a vital physiological function in patients infected with COVID-19.

Keywords


  1. Jeppesen S, Miklian J, editors. Introduction: Research in the Time of Covid-19. Forum for Development Studies; 2020: Taylor & Francis.
  2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  3. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun. 2020;527(3):618-23.
  4. Huang Y, Yang C, Xu X-f, Xu W, Liu S-w. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9.
  5. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-34.
  6. Shattat GF. A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J. 2015;7(1):399-409.
  7. Orozco-Beltran D, Gil-Guillen VF, Redon J, Martin-Moreno JM, Pallares-Carratala V, Navarro-Perez J, et al. Lipid profile, cardiovascular disease and mortality in a Mediterranean high-risk population: The ESCARVAL-RISK study. PLoS One. 2017;12(10):e0186196.
  8. Sami Khaza M. Atherogenic index of plasma (AIP) as a parameter in predicting cardiovascular risk in males compared to the conventional dyslipidemic indices (cholesterol ratios). Kerbala J Med. 2013;6(1):1506-13.
  9. Dayimu A, Wang C, Li J, Fan B, Ji X, Zhang T, et al. Trajectories of lipids profile and incident cardiovascular disease risk: a longitudinal cohort study. J Am Heart Assoc. 2019;8(21):013479.
  10. Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, Abrishami M, Juya M, Khodaee G, et al. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med J Islam Repub Iran. 2015;29:240.
  11. Quispe R, Elshazly MB, Zhao D, Toth PP, Puri R, Virani SS, et al. Total cholesterol/HDL-cholesterol ratio discordance with LDL-cholesterol and non-HDL-cholesterol and incidence of atherosclerotic cardiovascular disease in primary prevention: The ARIC study. Eur J Prev Cardiol. 2020;27(15):1597-605.
  12. Dildar S, Imran S, Naz F. Method comparison of Particle Enhanced Immunoturbidimetry (PEIT) with High Performance Liquid Chromatography (HPLC) for glycated hemoglobin (HbA1c) analysis. Clin Diabetes Endocrinol. 2021;7(1):1-5.
  13. Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clinica Chimica Acta. 2020;510:105-10.
  14. Hu X, Chen D, Wu L, He G, Ye W. Low serum cholesterol level among patients with COVID-19 infection in Wenzhou, China. China (February 21, 2020). 2020.
  15. Roccaforte V, Daves M, Lippi G, Spreafico M, Bonato C. Altered lipid profile in patients with COVID-19 infection. J Lab Precis Med. 2020.
  16. Wang G, Zhang Q, Zhao X, Dong H, Wu C, Wu F, et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health Dis. 2020;19(1):1-7.
  17. Hilser JR, Han Y, Biswas S, Gukasyan J, Cai Z, Zhu R, et al. Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. J Lipid Res. 2021;62.
  18. Thacker SG, Zarzour A, Chen Y, Alcicek MS, Freeman LA, Sviridov DO, et al. High‐density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology. 2016;149(3):306-19.
  1. Wang G, Deng J, Li J, Wu C, Dong H, Wu S, et al. The Role of High-Density Lipoprotein in COVID-19. Front Pharmacol. 2021:1847.
  2. DeGoma EM, degoma RL, Rader DJ. Beyond high-density lipoprotein cholesterol levels: evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. 2008;51(23):2199-211.
  3. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222-32.
  4. Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020;91(1):161.
  5. Yıldırım ÖT, Kaya Ş. The atherogenic index of plasma as a predictor of mortality in patients with COVID-19. Heart & Lung. 2021;50(2):329-33.
  6. Kočar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: Basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids Bba-Mol Cell Biol L. 2021;1866(2):158849.
  1. Alcántara-Alonso E, Molinar-Ramos F, González-López JA, Alcántara-Alonso V, Muñoz-Pérez MA, Lozano-Nuevo JJ, et al. High triglyceride to HDL-cholesterol ratio as a biochemical marker of severe outcomes in COVID-19 patients. Clin Nutr ESPEN. 2021.
  2. Feingold KR. The bidirectional link between HDL and COVID-19 infections. J Lipid Res. 2021;62.
  3. Huang S, Zhou C, Yuan Z, Xiao H, Wu X. The clinical value of high-density lipoprotein in the evaluation of new coronavirus pneumonia. Adv Clin Exp Med. 2021;30(2):153-6.
  4. Tanaka S, De Tymowski C, Assadi M, Zappella N, Jean-Baptiste S, Robert T, et al. Lipoprotein concentrations over time in the intensive care unit COVID-19 patients: Results from the ApoCOVID study. PLoS One. 2020;15(9):e0239573.
  5. Wei X, Zeng W, Su J, Wan H, Yu X, Cao X, et al. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol. 2020;14(3):297-304.
  6. Yue J, Xu H, Zhou Y, Liu W, Han X, Mao Q, et al. Dyslipidemia is related to mortality in critical patients with coronavirus disease 2019: a retrospective study. Front Endocrinol. 2021;12.