Bifidobacteriaceae Family Diversity in Gut Microbiota of Patients with Renal Failure

Document Type : Original Articles

Authors

1 Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran

2 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

3 Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4 Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Bifidobacteriaceae family are gut microbiota that exhibit probiotic or health promoting effects on the host. Several studies have suggested that gut microbiota are quantitatively and qualitatively altered in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The present study aimed to assess the members of Bifidobacteriaceae family in fecal samples of patients with CKD and ESRD and compare them with non-CKD/ESRD patients to find any changes in their counts and diversions in these patients. Twenty fresh fecal samples from patients with CKD/ESRD and twenty from non-CKD/ESRD patients were examined. Whole DNA was extracted from fecal samples and the gut microbiota composition was analyzed by next generation sequencing (NGS). A total of 651 strains were identified from 40 fecal samples, 8 (1.23%) strains of which were identified as family Bifidobacteriaceae. The most abundant species in both control and disease groups were Bifidobacterium adolescentis and Bifidobacterium longum subsp. longum, and the least abundant species in the disease group was Bifidobacterium animalis subsp. lactis. There was no significant difference in the abundance of various species between the disease and control groups (p < 0.05). This study confirms that the members of the Bifidobacteriaceae family are not altered in patients with CKD/ESRD.

Keywords

Main Subjects


Article Title [French]

Diversité de la Famille des Bifidobacteriaceae dans le Microbiote Intestinal des Patients Atteints d'insuffisance Rénale

Abstract [French]

La famille des Bifidobacteriaceae est un microbiote intestinal qui présente des effets probiotiques ou favorisant la santé sur l'hôte. Plusieurs études ont suggéré que le microbiote intestinal est altéré quantitativement et qualitativement chez les patients atteints d'insuffisance rénale chronique (IRC) et d'insuffisance rénale terminale (IRT). La présente étude visait à évaluer les membres de la famille des Bifidobacteriaceae dans des échantillons fécaux de patients atteints d'IRC et d'IRT et à les comparer avec des patients non-IRC/IRT pour trouver des changements dans leurs décomptes et détournements chez ces patients. Vingt échantillons fécaux frais de patients atteints d'IRC/IRC et vingt de patients non-IRC/IRT ont été examinés. L'ADN entier a été extrait d'échantillons fécaux et la composition du microbiote intestinal a été analysée par séquençage de nouvelle génération (SNG). Au total, 651 souches ont été identifiées à partir de 40 échantillons fécaux, dont 8 (1.23%) souches ont été identifiées comme appartenant à la famille des Bifidobacteriaceae. Les espèces les plus abondantes dans les groupes témoins et malades étaient Bifidobacterium adolescentis et Bifidobacterium longum subsp. longum, et l'espèce la moins abondante dans le groupe de la maladie était Bifidobacterium animalis subsp. lactis. Il n'y avait pas de différence significative dans l'abondance des diverses espèces entre les groupes malades et témoins (p<0.05). Cette étude confirme que les membres de la famille des Bifidobacteriaceae ne sont pas altérés chez les patients atteints d'IRC/IRT.

Keywords [French]

  • Bifidobacteriaceae
  • insuffisance rénale chronique (IRC)
  • insuffisance rénale terminale (IRT)
  • séquençage de nouvelle génération (SNG)
  1. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283-307.
  2. Leahy SC, Higgins DG, Fitzgerald GF, van Sinderen D. Getting better with bifidobacteria. J Appl Microbiol. 2005;98(6):1303-15.
  3. O'Hara AM, Shanahan F. Mechanisms of action of probiotics in intestinal diseases. Sci World J. 2007;7:31-46.
  4. Reinhardt C, Reigstad CS, Backhed F. Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr. 2009;48(3):249-56.
  5. Azcarate-Peril MA, Sikes M, Bruno-Barcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G401-24.
  6. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646-52 e1-5.
  7. Gholizadeh P, Mahallei M, Pormohammad A, Varshochi M, Ganbarov K, Zeinalzadeh E, et al. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb Pathog. 2019;127:48-55.
  8. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58(1):120-7.
  9. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71(3):495-548.
  10. Parte A, Whitman W, Goodfellow M, Kämpfer P, Busse H, Trujillo M, et al. The Actinobacteria. Bergey’s manual of systematic bacteriology. New York: Springer; 2012.
  11. Zhang G, Gao B, Adeolu M, Khadka B, Gupta RS. Phylogenomic Analyses and Comparative Studies on Genomes of the Bifidobacteriales: Identification of Molecular Signatures Specific for the Order Bifidobacteriales and Its Different Subclades. Front Microbiol. 2016;7(978).
  12. Laureys D, Cnockaert M, De Vuyst L, Vandamme P. Bifidobacterium aquikefiri sp. nov., isolated from water kefir. Int J Syst Evol Microbiol. 2016;66(3):1281-6.
  13. Ventura M, van Sinderen D, Fitzgerald GF, Zink R. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek. Antonie Van Leeuwenhoek. 2004;86(3):205-23.
  14. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron. 1996;74(2):349-55.
  15. Vaziri ND, Yuan J, Rahimi A, Ni Z, Said H, Subramanian VS. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant. 2012;27(7):2686-93.
  16. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308-15.
  17. Kalantar-Zadeh K, Ikizler TA, Block G, Avram MM, Kopple JD. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis. 2003;42(5):864-81.
  18. Lau WL, Ix JH. Clinical detection, risk factors, and cardiovascular consequences of medial arterial calcification: a pattern of vascular injury associated with aberrant mineral metabolism. Semin Nephrol. 2013;33(2):93-105.
  19. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A. 2008;105(49):19474-9.
  20. van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM, de Groot PJ, et al. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A. 2009;106(7):2371-6.
  21. Simenhoff M, Dunn S, Zollner G, Fitzpatrick M, Emery S, Sandine W, et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab. 1996;22(1-3):92-6.
  1. Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia. 2010;53(4):606-13.
  2. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
  3. Cruz-Mora J, Martinez-Hernandez NE, Martin del Campo-Lopez F, Viramontes-Horner D, Vizmanos-Lamotte B, Munoz-Valle JF, et al. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J Ren Nutr. 2014;24(5):330-5.
  4. Kotanko P, Carter M, Levin NW. Intestinal bacterial microflora--a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol Dial Transplant. 2006;21(8):2057-60.
  5. Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids. 2008;153(1):14-23.
  6. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21(6):495-505.
  7. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G518-25.
  8. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470-81.
  9. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374-83.
  10. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013;62(4):1238-44.
  1. Evenepoel P, Meijers BK, Bammens BR, Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl. 2009(114):S12-9.
  2. Goetze O, Fruehauf H, Pohl D, Giarre M, Rochat F, Ornstein K, et al. Effect of a prebiotic mixture on intestinal comfort and general wellbeing in health. Br J Nutr.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   2008;100(5):1077-85.

  1. Taki K, Takayama F, Niwa T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr. 2005;15(1):77-80.
  2. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int. 2015;88(5):958-66.