A Case of Identity Confirmation of Brucella abortus S99 by Phage Typing and PCR Methods

Document Type : Original Articles

Authors

1 Department of Brucellosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

2 Department of Bio bank, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

3 Department of Brucellosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran, Iran

Abstract

Brucellosis is a zoonotic infection that is associated with fever in humans and abortion in animals. The agent of this disease is a facultative intracellular gram-negative coccobacillus called Brucella. There are six classic species, including B. abortus, B. melitensis, B. suis, B. canis, B. neotomae, and B. ovis.  In recent years, four new species have been reported, including Brucella ceti, B. microti, B. pinnipedialis, and B. inopinata. Human disease causes hygienic and economic losses, including inactivity of workforces in the community and high cost of treatment. The disease also causes catastrophic losses in the livestock industry. There is no effective vaccine against human brucellosis. Hence, attempts to prevent human infection with Brucella are focused on preventative measures, including control of infection in livestock, which lead to a reduction in its incidence in humans. The common methods for diagnosis of this disease are serologic methods including Rose Bengal, Wright -2 ME and the ring test. B. abortus strain S99 is used to produce these diagnostic antigens. The production of these antigens requires the presence of a well-characterized seed with full identity. The aim of this work was confirmation of the identity of B. abortus S99 by phage typing, AMOS and multiplex PCR techniques. Therefore, it is essential to carry out the identification of the strains used as seed for the production of the brucellosis diagnostic antigens. In this project, B. abortus strain 99 was supplied by the bacterial collection of the Brucellosis Department of Razi Vaccine and Serum Research Institute. Then, the main aim of the present study was the confirmation of the seed identity by doing the tests through the standard phage typing method, AMOS PCR and multiplex PCR (Brucladder) methods. Results were in support of the identity of the studied strain, and the molecular methods could also be used as the sensitive approaches for validation of antigenic seed.

Keywords

Main Subjects


Article Title [French]

Un cas de Confirmation d'Identité de Brucella abortus S99 par Typage du Phage et Méthodes PCR

Abstract [French]

La brucellose est une zoonose à l’origine de fièvre chez l'homme et d’avortement chez l'animal. L'agent de cette maladie est un coccobacille Gram-négatif intracellulaire facultatif appelé Brucella. Il existe six espèces principales, à savoir B. abortus, B. melitensis, B. suis, B. canis, B. neotomae et B. ovis. Ces dernières années, quatre nouvelles espèces ont été signalées, à savoir Brucella ceti, B. microti, B. pinnipedialis et B. inopinata. Chez l’homme, cette maladie est souvent débilitante entraînant des pertes économiques, considérables. La maladie provoque également des pertes catastrophiques dans le secteur de l'élevage. Il n'y a pas de vaccin efficace contre la brucellose humaine. Par conséquent, les tentatives de prévention des infections zoonotiques sont axées sur des mesures préventives dans le but de contrôler l'infection chez le bétail afin de réduire son incidence chez l'homme. Les méthodes habituelles de diagnostic de cette maladie sont les méthodes sérologiques, notamment l’agglutination de Rose Bengal, Wright -2 ME et le ring-test. La souche S99 de B. abortus est utilisée pour produire les antigènes dédiés au diagnostic. La production de ces antigènes nécessite la présence d'une souche bien caractérisée et pleinement identitaire. Le but de ce travail était de confirmer l’identitéde B. abortus S99 par typage sur phage, par les techniques de PCR AMOS et Multiplex. Par conséquent, il est essentiel de procéder à l'identification des souches utilisées pour la production des antigènes utilisés dans le diagnostiques de la brucellose. La souche 99 de B. abortus étudiée dans ce projet provenait de la collection bactérienne du département de brucellose de l’Institut de recherche sur le vaccin et le sérum de Razi. L'objectif principal était ensuite de confirmer l'identité de cette souche en effectuant une batterie de tests parlysotypage, PCR AMOS et PCR multiplex (Brucladder). Les résultats ont confirmé l'identité de la souche étudiée et les méthodes moléculaires présentées dans cet article constituent une approche sensible pour la validation des souches dédiées à la production d’antigénes.

Keywords [French]

  • Test moléculaire
  • Souche antigénique
  • Brucella abortus
(FAO), F.a.A.O.o.t.U.N., 2010. Brucella melitensis in Eurasia and the Middle East. FAO Animal Production and Health Proceedings Rome.
(WHO), W.H.O., 2011. The control of neglected zoonotic diseases. In Report of the 3rd WHO Conference on the control of neglected zoonotic diseases: 'Community-based interventions for prevention and control of neglected zoonotic diseases'. WHO, Geneva.
Adone, R., Francia, M., Ciuchini, F., 2008. Brucella melitensis B115-based complement fixation test to detect antibodies induced by Brucella rough strains. J Appl Microbiol 105, 567-574.
Ahasan, M.S., Rahman, M.S., Rahman, A.K., Berkvens, D., 2017. Bovine and Caprine Brucellosis in Bangladesh: Bayesian evaluation of four serological tests, true prevalence, and associated risk factors in household animals. Trop Anim Health Prod 49, 1-11.
Alton, G., Jones, L., Angus, R., Verger, J., 1988a. Techniques for the Brucellosis laboratory, Paris.
Alton, G., Jones, L., Angus, R., Verger, J., 1988b. Techniques for the Brucellosis laboratory: Paris: Institute National de la Recherdie Agrononique.
Araj, G.F., 2010. Update on laboratory diagnosis of human brucellosis. Int J Antimicrob Agents 36, S12-S17.
Bounaadja, L., Albert, D., Chénais, B., Hénault, S., Zygmunt, M.S., Poliak, S., et al., 2009. Real-time PCR for identification of Brucella spp.: a comparative study of IS711, bcsp31 and per target genes. Vet Microbiol 137, 156-164.
Bricker, B.J., Halling, S.M., 1994. Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol 32, 2660-2666.
Cunningham, B., Miler, J.J., Dolan, L., McKeon, F., O'Meara, M., 1980. Immunological characteristics in cattle of allergens derived from smooth Brucella abortus S99. Vet Rec 107, 369-375.
Ewalt, D.R., Bricker, B.J., 2000. Validation of the Abbreviated BrucellaAMOS PCR as a Rapid Screening Method for Differentiation ofBrucella abortus Field Strain Isolates and the Vaccine Strains, 19 and RB51. J Clin Microbiol 38, 3085-3086.
Getachew, T., Getachew, G., Sintayehu, G., Getenet, M., Fasil, A., 2016. Bayesian Estimation of Sensitivity and Specificity of Rose Bengal, Complement Fixation, and Indirect ELISA Tests for the Diagnosis of Bovine Brucellosis in Ethiopia. Vet Med Int 2016, 5.
Godfroid, J., Garin-Bastuji, B., Saegerman, C., Blasco, J., 2013. Brucellosis in terrestrial wildlife. Revue scientifique et technique-Office international des épizooties.
Goktas, P., Sumer, S., Oktay, G., Goktas, S., 1991. Bruselloz tanisindaiki test in karsilastirilmasi. Turk Microbiol Cem Derg 21, 199-203.
Gomez, M.C., Nieto, J.A., Rosa, C., Geijo, P., Escribano, M.A., Munoz, A., et al., 2008. Evaluation of seven tests for diagnosis of human brucellosis in an area where the disease is endemic. Clin Vaccine Immunol 15, 1031-1033.
Hanci, H., Igan, H., Uyanik, M.H., 2017. Evaluation of a new and rapid serologic test for detecting brucellosis: Brucella Coombs gel test. Pak J Biol Sci 20, 108-112.
Júnior, G.N., Megid, J., Mathias, L., Paulin, L., Vicente, A., Cortez, A., et al., 2017. Performance of microbiological, serological, molecular, and modified seminal plasma methods in the diagnosis of Brucella abortus in semen and serum of bovine bulls. Biologicals 48, 6-9.
López-Goñi, I., García-Yoldi, D., Marin, C., De Miguel, M., Munoz, P., Blasco, J., et al., 2008. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J Clin Microbiol 46, 3484-3487.
Manual, O., 2017. Bovine brucellosis. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, OIE, World Organisation for Animal Health.
Mert, A., Ozaras, R., Tabak, F., Bilir, M., Yilmaz, M., Kurt, C., et al., 2003. The sensitivity and specificity of Brucella agglutination tests. Diag Micr Infec Dis 46, 241-243.
Nielsen, K., 2002. Diagnosis of brucellosis by serology. Veterinary Microbiology 90, 447-459.
Reddy, A., Singh, D.K., Mantur, B.G., Kumar, A., Kumari, G., Rajagunalan, S., et al., 2014. Seroepidemiology of human brucellosis in Karnataka. J Vet Pub Hlth 12, 113-115.
Ruiz-Mesa, J., Sanchez-Gonzalez, J., Reguera, J., Martin, L., Lopez-Palmero, S., Colmenero, J., 2005. Rose Bengal test: diagnostic yield and use for the rapid diagnosis of human brucellosis in emergency departments in endemic areas. Clin Microbiol Infect 11, 221-225.
Song, L., Li, J., Hou, S., Li, X., Chen, S., 2012. Establishment of loop-mediated isothermal amplification (LAMP) for rapid detection of Brucella spp. and application to milk and blood samples. J Microbiol Meth 90, 292-297.
Wareth, G., Melzer, F., El‐Diasty, M., Schmoock, G., Elbauomy, E., Abdel‐Hamid, N., et al., 2017. Isolation of Brucella abortus from a Dog and a Cat confirms their Biological Role in Re‐emergence and Dissemination of Bovine Brucellosis on Dairy Farms. Transbound Emerg Dis 64, e27-e30.
Young, E.J., 1995. An overview of human brucellosis. Clin Infect Dis 21, 283-289.
Zowghi, E., Ebadi, A., Yarahmadi, M., 2008. Isolation and identification of Brucella organisms in Iran. Clin Infect Dis 3, 185-188.