Sequencing and In Silico Multi-aspect Analysis of S1 Glycoprotein in 793/B Serotype of Infectious Bronchitis Virus Isolated From Iran in 2003 and 2011

Document Type : Original Articles

Authors

1 Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

2 Department of Animal Virology, Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran

3 Department of Research, Breeding and Production of Laboratory Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran

4 Department of Brucellosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran

Abstract

Infectious bronchitis (IB) is an acute, highly contagious, and economically important viral disease of chickens. The S1 subunit from Spike (S) protein plays the major role in protective immunity and is involved in the host-virus interactions, as well as infectious bronchitis virus (IBV) serotyping. Aim of the present study was multi-aspect analysis of the molecular and immunological features of 5' part belonging to the S1 glycoprotein sequence of Iranian 793/B IBV strain isolates. This might ideally help in characterization, prevention, and vaccine development. The tissue samples were prepared, followed by virus isolation, reverse transcription polymerase chain reaction and restriction fragment length polymorphism analysis. In addition, sequencing and registration of the sequences in the National Center for Biotechnology Information were performed. Moreover, 12 sequences were retrieved from Fars province, Iran. The next steps included evaluation of conservation/variability along the sequences, phylogenetic analysis, estimation of the average evolutionary divergence over all the sequence pairs, predicting the phosphorylation/N-glycosylation/palmitoylation sites, and the final analysis of antigenicity. The findings of alignment, entropy plot, and pairwise similarity analysis revealed 17 hypervariable regions. The isolates belonging to Tehran were clustered in phylogenetic tree, and the most similar isolates to them were ADW11182 and ADW11183. Location of some of the N-glycosylation/phosphorylation/palmitoylation points indicated that these sites were conserved among the isolates. Furthermore, the frequency of epitopes and their scores reflect the high immunogenicity of S1 protein in 793/B serotype. Analysis of the primary and secondary structures demonstrated that their parameters had variable values and were different regarding the number and location of α-helix, β-strand, and coils. According to our findings, the Iranian isolates of 793/B serotype change their molecular characteristics during time and in different geographical regions. These alterations might account for failure in prevention programs and differences in virulence and pathogenicity.

Keywords

Main Subjects


Article Title [French]

Séquençage et Analyse in Silico d’Aspects Multiples de la Glycoprotéine S1 dans le Sérotype 793 / B du de la Bronchite Infectieuse Isolé en l'Iran dans les Années 2003 et 2011

Abstract [French]

La bronchite infectieuse (BI) est une maladie virale aiguë, hautement contagieuse et économiquement importante chez les poulets. La sous-unité S1 de la protéine Spike (S) joue un rôle majeur dans l'immunité protectrice et est impliquée dans les interactions hôte-virus, ainsi que dans le sérotypage du virus de la bronchite infectieuse (IBV). Le but de cette étude était l'analyse de plusieurs aspects des caractéristiques moléculaires et immunologiques de la partie 5 'appartenant à la séquence glycoprotéique S1 d'isolats de souche IBV 793 / B iraniens. Cela pourrait idéalement aider à la caractérisation, à la prévention et au développement de vaccins. Les échantillons de tissu ont été préparés, le virus a été ensuite isol, et une réaction en chaîne par polymérase en transcription inverse a a été menée pour l'analyse du polymorphisme de la longueur des frragments de restriction. De plus, le séquençage et l'enregistrement des séquences ont été effectués dans le Centre national d'information sur la biotechnologie. séquencesDouze séquences ont été récupérées de la province de Fars, en Iran. Les étapes suivantes comprenaient l'évaluation de la conservation / variabilité des séquences, l'analyse phylogénétique, l'estimation de la divergence évolutive moyenne sur toutes les paires de séquences, la prédiction des sites de phosphorylation / N-glycosylation / palmitoylation et l'analyse finale de l'antigénicité. Les résultats de l'alignement, du tracé d'entropie et de l'analyse de similarité par paires ont révélé 17 régions hypervariables. Les isolats àprovenant de Téhéran regroupés dans un arbre phylogénétique et les isolats les plus similaires étaient ADW11182 et ADW11183. L'emplacement de certains des points de N-glycosylation / phosphorylation / palmitoylation indique que ces sites sont conservés parmi les isolats. De plus, la fréquence des épitopes et leurs scores reflètent l'immunogénicité élevée de la protéine S1 dans le sérotype 793 / B. L'analyse des structures primaires et secondaires a montré que leurs paramètres avaient des valeurs variables et étaient différents pour le nombre et la localisation de l'hélice α, du brin β et des spires. Selon nos résultats, les isolats iraniens de sérotype 793/ B modifient leurs caractéristiques moléculaires au cours du temps et selon les différentes régions géographiques. Ces modifications pourraient expliquer l'échec des programmes de prévention et les différences de virulence et de pathogénicité.

Keywords [French]

  • Sérotype 793 / B
  • Bioinformatique
  • Virus de la bronchite infectieuse
  • Caractéristiques Moléculaires
  • Glycoprotéine S1
Abdel-Moneim, A.S., El-Kady, M.F., Ladman, B.S., Gelb, J., 2006. S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt. Virol J 3, 78.
Abro, S.H., Ullman, K., Belak, S., Baule, C., 2012. Bioinformatics and evolutionary insight on the spike glycoprotein gene of QX-like and Massachusetts strains of infectious bronchitis virus. Virol J 9, 211.
Adzhar, A., Gough, R.E., Haydon, D., Shaw, K., Britton, P., Cavanagh, D., 1997. Molecular analysis of the 793/B serotype of infectious bronchitis virus in Great Britain. Avian Pathol 26, 625-640.
Bochkov, Y.A., Batchenko, G.V., Shcherbakova, L.O., Borisov, A.V., Drygin, V.V., 2006. Molecular epizootiology of avian infectious bronchitis in Russia. Avian Pathol 35, 379-393.
Boroomand, Z., Razeghian, I., Asasi, K., 2011. Isolation and identification of a new isolate of avian infectious bronchitis virus IRFIBV32 and a study of its pathogenicity. Online J Vet Res 15, 366–380.
Dadmanesh M., Mohammad Mehdi Ranjbar, Seyed Moayed Alavian, Khodayar Ghorban. Sequencing and phylogenetic study of partial NS3 gene of Iranian GB virus C/Hepatitis G Virus (HGV) originated from hemodialysis patients in Tehran. Hepatitis Monthly .2015. Hepat Mon. 2015 Mar; 15(3): e24173.
Cavanagh, D., Davis, P.J., Cook, J.K., 1992. Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Pathol 21, 401-408.
Cook, J.K., Chesher, J., Baxendale, W., Greenwood, N., Huggins, M.B., Orbell, S.J., 2001. Protection of chickens against renal damage caused by a nephropathogenic infectious bronchitis virus. Avian Pathol 30, 423-426.
Dolz, R., Pujols, J., Ordonez, G., Porta, R., Majo, N., 2008. Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 374, 50-59.
Draper, J.M., Xia, Z., Smith, C.D., 2007. Cellular palmitoylation and trafficking of lipidated peptides. J Lipid Res 48, 1873-1884.
Ingrell, C.R., Miller, M.L., Jensen, O.N., Blom, N., 2007. NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23, 895-897.
Ivanov, K.I., Puustinen, P., Merits, A., Saarma, M., Makinen, K., 2001. Phosphorylation down-regulates the RNA binding function of the coat protein of potato virus A. J Biol Chem 276, 13530-13540.
Kant, A., Koch, G., van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A., van der Zeijst, B.A., 1992. Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J Gen Virol 73 ( Pt 3), 591-596.
Keyvani, H., Ahmadi, N.A., Ranjbar M. M., Ataei Kachooei, S., Ghorban, Kh., Dadmanesh, M., 2016. Immunoinformatics Study of gp120 of Human Immunodeficiency Virus Type 1 Subtype CRF35_AD Isolated from Iranian Patients. Arch of Clin In Dis. 11, 4.
Kusters, J.G., Niesters, H.G.M., Lenstra, J.A., Horzinek, M.C., van der Zeijst, B.A.M., 1989. Phylogeny of antigenic variants of avian coronavirus IBV. Virology 169, 217-221.
Ladman, B.S., Loupos, A.B., Gelb, J., Jr., 2006. Infectious bronchitis virus S1 gene sequence comparison is a better predictor of challenge of immunity in chickens than serotyping by virus neutralization. Avian Pathol 35, 127-133.
Linder, M.E., Deschenes, R.J., 2007. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8, 74-84.
Meir, R., Rosenblut, E., Perl, S., Kass, N., Ayali, G., Perk, S., et al., 2004. Identification of a novel nephropathogenic infectious bronchitis virus in Israel. Avian Dis 48, 635-641.
Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G., Brown, D.A., 1999. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 274, 3910-3917.
Poorbaghi, S., Mohammadi, A., Asasi, K., 2011. Molecular detection of avian infectious bronchitis virus serotypes from clinically suspected broiler chicken flocks in Fars province of Iran. Pak Vet J 32, 93-96.
Ranjbar, M.M., Ghorban, K., Alavian, S.M., Keyvani, H., Dadmanesh, M., Roayaei  Ardakany, A., Motedayen, M.H., Sazmand, A., 2014. GB virus C/Hepatitis G virus envelope glycoprotein E2: computational Molecular features and Immunoinformatic study. Hepatitis Month. 13(12):e15342. DOI:10.5812/hepatmon.15342.
Ranjbar, M.M., Ahmadi, N.A., Ghorban, K., Ghalyanchi Langeroudi, A., Dadmanesh, M., Amini, H., et al., 2015. Immnoinformatics: novel view in understanding of immune system function, databases and prediction of immunogenic epitopes. koomesh. 17 (1):18-26.
Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., 2011. Diseases of Poultry, Wiley.
Seyfi Abad Shapouri, M.R., Mayahi, M., Assasi, K., Charkhkar, S., 2004. A survey of the prevalence of infectious bronchitis virus type 4/91 in Iran. Acta Vet Hung 52, 163-166.
Shen, C., Guo, Y., Cheng, A., Wang, M., Zhou, Y., Lin, D., et al., 2009. Characterization of subcellular localization of duck enteritis virus UL51 protein. Virol J 6, 92.
Shimazaki, Y., Horiuchi, T., Harada, M., Tanimura, C., Seki, Y., Kuroda, Y., et al., 2008. Isolation of 4/91 type of infectious bronchitis virus as a new variant in Japan and efficacy of vaccination against 4/91 type field isolate. Avian Dis 52, 618-622.
Vasfi Marandi, M., Keyvani Amineh, H., Akbari Azad, G., 2007. Molecular analysis of three Iranian isolates belonged to 793/B serotype of infectious bronchitis viruses. J Vet Res 62, 69-80.
Veit, M., Schmidt, M.F., 2006. Palmitoylation of influenza virus proteins. Berl Munch Tierarztl Wochenschr 119, 112-122.
Vigerust, D.J., Shepherd, V.L., 2007. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15, 211-218.
Wan, J., Roth, A.F., Bailey, A.O., Davis, N.G., 2007. Palmitoylated proteins: purification and identification. Nat Protoc 2, 1573-1584.
Wang, L., Junker, D., Collisson, E.W., 1993. Evidence of Natural Recombination within the S1 Gens of Infectious Bronchitis Virus. Virology 192, 710-716.
Wei, Z.J., Wei, P., Mo, M.L., Li, M., Wei, T.C., Li, K.R., 2008. [Genetic variation of S1 gene hypervariable region I of infectious bronchitis viruses isolated in different periods in Guangxi]. Bing Du Xue Bao 24, 126-132.
Yan, Q., 2008. Bioinformatics databases and tools in virology research: an overview. In Silico Biol 8, 71-85.
Zhang, J., Pekosz, A., Lamb, R.A., 2000. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 74, 4634-4644.