Effect of Four Chicken Carcass Transportation Methods at Selected Room Temperatures on the Bacterial Load of Staphylococcus aureus, Salmonella Species, and Escherichia coli

Document Type : Original Articles

Authors

Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Pathogenic bacteria are responsible for a significant number of food poisonings in humans through infected poultries. The main objective of this study was to assess the effect of transportation of chicken carcasses at 18-24, 4-5, and 10-14 oC on the bacterial loads of Staphylococcus aureus, Salmonella species, and Escherichia coli. This study was conducted on 180 fresh chicken carcasses (1197.0±19.88 g) randomly collected from a commercial poultry processing plant in southern Tehran, Iran, in a hot season in 2015. The sampling was performed at two stages, namely post-chilled washing and after 4 h of transportation. In the latter stage, the samples were selected from three vehicles with three types of temperatures. These vehicles included a pickup (18-24 oC), a refrigerated car (4-5 oC), and a refrigerated vehicle with switched off refrigerator (10-14 oC). According to the results, the whole body carcass samples transported at the pickup temperature had the highest mean total count (18.63×106±2.82×106 cfu.ml-1) and was greater (P<0.05) than the standard limit (5×106). On the other hand, the samples carried by the vehicle with switched off refrigerator had the lowest total count (0.65±0.04×106 cfu.ml-1). Similar results were obtained for S. aureus; accordingly, it reached the maximum (333.0±30.73 cfu.ml-1) at 18-24 oC, which was lower than the national standard limit even after 4 h of transportation. In addition, the cfu values for the total count and S. aureus sampled from the chicken carcasses were lower than the national standard level even after 4 h of carcass transportation, with the exception of Salmonella spp. at the three vehicle temperatures and E. coli at the pickup temperature. It was suggested that the transportation temperature of less than 10-14 oC could not affect the fresh chicken carcass to be contaminated with S. aureus and E. coli.

Keywords

Main Subjects


Article Title [French]

L'effet du transport de 4 heures à différentes températures des carcasses de poulet sur la charge bactérienne de Staphylococcus aureus, Salmonella spp. et Escherichia coli

Abstract [French]

Les bactéries pathogènes sont responsables d'un nombre important d'empoisonnements alimentaire d'origine alimentaire chez l'homme après la consommation des volailles infectées. L'objectif principal de cette étude était d'évaluer l'effet de 4 h de transport des carcasses de poulet à 18-24 oc, 4-5 oC et 10-14 oC sur la charge bactérienne de S. aureus , Salmonella spp. et Escherichia coli. Cent quatre-vingts carcasses de poulet frais (1197,0 ± 19,88 g) ont été recueillies au hasard dans une usine de transformation de volailles commerciales dans le sud de Téhéran, durant la saison chaude en 2015. Deux prélèvements ont été effectués après un lavage réfrigéré et post-abattage, après 4 heures de transport des carcasses à trois temperatures ambiantes par trois types de véhicules normaux et frigorifiques. La valeur moyenne du nombre total de colonies bactériennes dans lescarcasses entières transportées à température ambient atteint le maximum de 18,63 × 106 ± 2,82 × 106 cfu.ml-1et montre une valeur supérieure (p <0,05) à la limite standard (5 × 106) alors que dans le véhicule refroidi isolé montrait la valeur minimale de 0,65 ± 0,04 × 106 cfu.ml-1. Un résultat similaire a été obtenu pour S. aureus qui atteignait le maximumde 333,0 ± 30,73 cfu.ml-1 à 18-24 oC, ce qui cependant restait inférieur à la limite standard nationale, même après 4 heures de transport. Il a été conclu que les valeurs du cfu pour le nombre total des colonies bactériennes et S. aureus obtenu à partir des carcasses de poulet restent inférieures à la limite standard nationale après 4 heures de transport des carcasses à l'exception de Salmonella spp. dans les différents types de transport et pour E. coli au niveau du ramassage. Ces résultats suggérent qu’une température de transport des poulets de moins de 10-14 oc n’affecterait la contamination des carcasses de poulet frais par S. aureus et E. coli.

Keywords [French]

  • Salmonella
  • E. coli
  • empoisonnement par Staphylococcus aureus
  • transport du poulet
, H., Dastmalchi, F., Ghezelloo, Y., Paykan, R., Fotovat, M., Rahmannya, J., 2008. The application of silver nano-particles to the reduction of bacterial contamination in poultry and animal production. Food Manuf Effic 2, 49-53.
Allen, V., Burton, C.H., Wilkinson, D.J., Whyte, R.T., Harris, J.A., Howell, M., et al., 2008. Evaluation of the performance of different cleaning treatments in reducing microbial contamination of poultry transport crates. British Poul Sci49, 233-240.
Álvarez-Astorga, M., Capita, R., Alonso-Calleja, C., Moreno, B., del, M.a., Garcı́a-Fernández, C., 2002. Microbiological quality of retail chicken by-products in Spain. Meat Sci 62, 45-50.
Blank, G., Powell, C., 1995. Microbiological and hydraulic evaluation of immersion chilling for poultry. J Food Prot 58, 1386-1388.
Cason, J., Bailey, J., Stern, N., Whittemore, A., Cox, N., 1997. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses. Poul Sci 76, 1037-1041.
Cavani, R., Schocken-Iturrino, R.P., Garcia, T.C.F.L., Oliveira, A.C.d., 2010. Comparison of microbial load in immersion chilling water and poultry carcasses after 8, 16 and 24 working hours. Ciencia Rural 40, 1603-1609.
Chambers, Bisaillon, Labbe, Y., Poppe, C., Langford, C.F., 1998. Salmonella prevalence in crops of Ontario and Quebec broiler chickens at slaughter. Pou lSci 77, 1497-1501.
Chong, Y., 2012. Risk management of emerging foodborne diseases. Singap Manage J 1, 34-52.
Corry, J., Allen, V., Hudson, W., Breslin, M., Davies, R., 2002. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control. J Appl Microbiol 92, 424-432.
Dharod, J.M., Pérez-Escamilla, R., Paciello, S., Venkitanarayanan, K., Bermúdez-Millán, A., Damio, G., 2007. Critical control points for home prepared'chicken and salad'in Puerto Rican households. Food Protect Trend 27, 544-552.
Donado-Godoy, P., Clavijo, V., León, M., Tafur, M.A., Gonzales, S., Hume, M., et al., 2012. Prevalence of Salmonella on retail broiler chicken meat carcasses in Colombia. J Food Protect 75, 1134-1138.
FDO, 2014. Acceptant limitation table, Microbiology tules. Health, Treatment and Medical Training Ministry, Food and Drug Deputy, Iran, p. 240.
Gebauer, H., Laska, M., 2011. Convenience Stores Surrounding Urban Schools: An Assessment of Healthy Food Availability, Advertising, and Product Placement. J Urban Health 88, 616-622.
Geornaras, I., de Jesus, E., van Zyl, E., von Holy, A., 1997. Bacterial populations of different sample types from carcasses in the dirty area of a South African poultry abattoir. J Food Protect 60, 551-554.
Institute of Standards and Industrial Research of Iran. [Drinking water-Physical and chemical specifications (Persian)]., 2012a. Institute of Standard and Industrial Research of Iran.  E. coli detection in food samples. ISIRI, Iran.
Institute of Standards and Industrial Research of Iran. [Drinking water-Physical and chemical specifications (Persian)]., 2012b. Institute of Standard and Industrial Research of Iran. Salmonella spp. detection in food samples. ISIRI, Iran.
Institute of Standards and Industrial Research of Iran. [Drinking water-Physical and chemical specifications (Persian)]., 2012c. Institute of Standard and Industrial Research of Iran. Positive quagulase Staphylococcus aureus detection. ISIRI, Iran.
Institute of Standards and Industrial Research of Iran. [Drinking water-Physical and chemical specifications (Persian)]., 2012d. Institute of Standard and Industrial Research of Iran. Total count procedure. ISIRI, Iran.
IVO, 2014. Acceptant Limitation Rules for Meat, Directorate of Supervision Public Health. Iran Veterinary Organization, Iran.
Jetter, K.M., Cassady, D.L., 2006. The Availability and Cost of Healthier Food Alternatives. Ame J Prevent Med 30, 38-44.
Kozačinski, L., Hadžiosmanović, M., Zdolec, N., 2006. Microbiological quality of poultry meat on the Croatian market. Veterinarski Arh 76, 305-313.
Kreyenschmidt, J., Lohmeyer, K., Stahl, N., 2002. Charakterisierung des verderbs von frischfleisch: veränderung mikrobiologischer und biochemischer parameter von geflügelfleisch bei unterschiedlichen lagertemperaturen. Fleischwirtschaft 82, 108-111.
 Lillard, H., 1989. Factors affecting the persistence of Salmonella during the processing of poultry. J Food Protect 52, 829-832.
Luber, P., Brynestad, S., Topsch, D., Scherer, K., Bartelt, E., 2006. Quantification of Campylobacter species cross-contamination during handling of contaminated fresh chicken parts in kitchens. Appl Env Microbiol72, 66-70.
McCrea, B., Tonooka, K., VanWorth, C., Boggs, C., Atwill, E., Schrader, J., 2006. Prevalence of Campylobacter and Salmonella species on farm, after transport, and at processing in specialty market poultry. Poul Sci85, 136-143.
Mofidi, M., Shokoohmand, M., Saeedabadi, M.S., Ebadi, Z., 2002. Evaluation of carcass quality for coliforms, salmonella and psychrophiles on evisceration and chiller lines in Yazd province industrial poultry slaughterhouses. Sci Res J Health Faculty Yazd 13, 22-29 (In Persian).
Nayak, R.R., 2000. Foodborne pathogens in poultry production and post-harvest control. West Virginia University, USA.
Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., et al., 2010. Food-borne diseases—the challenges of 20years ago still persist while new ones continue to emerge. Int Jfood microbiol 139, S3-S15.
Northcutt, J., Berrang, M., Dickens, J., Fletcher, D., Cox, N., 2003. Effect of broiler age, feed withdrawal, and transportation on levels of coliforms, Campylobacter, Escherichia coli and Salmonella on carcasses before and after immersion chilling. Poul Sci 82, 169-173.
Olins, R.A., Corry, J., 1999. Safety of poultry meat: From farm to table. Bhabha Atomic Research Centre (BARC), Printed for the International Consultative Group on Food Irradiation (ICGFI) Vienna.
Petrak, T., Kalodera, Z., Novaković, P., Gumhalter Karolyi, L., 1999. Bacteriological comparison of parallel and counter flow water chilling of poultry meat. Meat Sci 53, 269-271.
Pieskus, J., Franciosini, M.P., Proietti, P.C., Reich, F., Kazeniauskas, E., Butrimaite-Ambrozeviciene, C., et al., 2008. Preliminary investigations on Salmonella spp. incidence in meat chicken farms in Italy, Germany, Lithuania and the Netherlands. Int J Poul Sci 7, 813-817.
Rahimi, F., Yousefi, R., Aghaei, S., 2006. Isolation of bacteria Staphylococcus aureus, E.coli, Salmonllaspp, mold and yeast from raw material of sausage and burger production. Iran J Infect DisTrop Med, 1-7 (In Persian).
Ristic, M., 1997. Application of chilling methods on slaughtered poultry. Fleischwirtschaft 77, 810-811.
Soltandalal, M.M., Vahedi, S., Zeraati, H., Bakhtiari, R., Izadpour, R., Khalifehgholi, M., 2007. Comparison of the bacterial prevalence of packaging and non-packaging red meat and poultry of retail and chain stores in southern Tehran. J Univ Med Sci Health Ser Yazd35-43 (In persian).
Tavakoli, H.R., Jodaei, A.A., Imani Fooladi, A.A., Sarshar, M., Rafati, H., AsadiBaghasiab, B., 2013. Common types of Staphylococcus aureus enterotoxin in meaty foods. Iran J Infect Dis Trop Med 17, No 59, 2013, 9-15.
 Todd, E.C., Greig, J.D., Bartleson, C.A., Michaels, B.S., 2009. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 6. Transmission and survival of pathogens in the food processing and preparation environment. J Food Protect72, 202-219.
Tyagi, C.L., Kumar, A., 2004. Consumer Behaviour. Atlantic Publishers &Dist, Dey 11, 1382 AP, India.
Zargar, M.H.S., Doust, R.H., Mobarez, A.M., 2014. Staphylococcus aureus enterotoxin a gene isolated from raw red meat and poultry in Tehran, Iran. Int J Enteric Pathog 2, e16085.
Rahimi, F., Yousefi, R., Aghaei, S., 2006. Isolation of bacteria Staphylococcus aureus, E.coli, Salmonlla spp, mold and yeast from raw material of sausage and burger production. Iranian Journal of Infectious Diseases and Tropical Medicine, 1-7 (In Persian).
Ristic, M., 1997. Application of chilling methods on slaughtered poultry. Fleischwirtschaft 77, 810-811.
Soltandalal, M.M., Vahedi, S., Zeraati, H., Bakhtiari, R., Izadpour, R., Khalifehgholi, M., 2007. Comparison of the bacterial prevalence of packaging and non-packaging red meat and poultry of retail and chain stores in southern Tehran. Journal of University of Medical Sciences and Health Services, Yazd, 35-43 (In persian).
Tavakoli, H.R., Jodaei, A.A., Imani Fooladi, A.A., Sarshar, M., Rafati, H., Asadi Baghasiab, B., 2013. Common types of Staphylococcus aureus enterotoxin in meaty foods. Iranian Journal of Infectious Diseases and Tropical Medicine 17, No 59, 2013, 9-15.
Todd, E.C., Greig, J.D., Bartleson, C.A., Michaels, B.S., 2009. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 6. Transmission and survival of pathogens in the food processing and preparation environment. Journal of Food Protection® 72, 202-219.
Tyagi, C.L., Kumar, A., 2004. Consumer Behaviour. Atlantic Publishers & Dist, Dey 11, 1382 AP, India.
Zargar, M.H.S., Doust, R.H., Mobarez, A.M., 2014. Staphylococcus aureus enterotoxin a gene isolated from raw red meat and poultry in Tehran, Iran. Int J Enteric Pathog 2, e16085.