Distribution of Antibiotic Resistance Genes among the Phylogroups of Escherichia coli in Diarrheic Calves and Chickens Affected by Colibacillosis in Tehran, Iran

Document Type : Short Communication

Authors

1 Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran

2 Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale, Department of Research and Development, Campo Boario, 64100 Teramo TE, Italy

3 Department of Microbiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran

4 Department of Veterinary Parasitology

Abstract

Antibiotic resistance occurs in the endogenous flora of exposed population in addition to pathogenic bacteria. This study was conducted to evaluate the distribution of antibiotic resistance genes among 63 isolates of Escherichia coli of Escherichia coli (E. coli) in diarrheic calves and poultry. According to the results, B1 and B2 were the most prevalent phylogroups of E. coli in calves and poultry carcasses, respectively. Antimicrobial resistance was observed in 76% of the isolates, and 62% of the strains were multi-drug resistant. Antibiotic resistance in E. coli strains obtained from calves strains was significantly higher than those obtained from poultries. Additionally, the strains of B1 and D phylogroups had the highest and lowest antimicrobial resistance, respectively. At least one encoding gene for integrone was detected in 23 strains (36.5%) and Class I integron had the highest prevalence. Accordingly, this study gave baseline information on the magnitude of the resistance problem and its genetic background in E. coli from domesticated animals of the Tehran, Iran. Moreover, the power of oligonucleotide array technology in the discrimination of different genotypes during a short time was confirmed in this study.

Keywords

Main Subjects


Article Title [French]

Distribution des gènes de résistance aux antibiotiques parmi les phylogroupes d’Escherichia coli chez les veaux diarrhéiques et les poulets touchés par la colibacillose à Téhéran, Iran

Abstract [French]

La consommation d’antibiotiques peut induire une résistance non seulement dans la flore endogène mais également chez les bactérie pathogène. Ce travail de recherche a été mené pour évaluer la distribution des gènes de résistance parmi 63 phylogroupes d’Escherichia coli (E. coli) chez les veaux diarrhéiques et la volaille. Selon les résultats, B1 et B2 étaient respectivement les phylogroupes les plus répandus d’E. coli chez les veaux et les carcasses de volaille. Unerésistance antimicrobienne a été observée chez 76% des isolatset 62% des souches étaient multi-résistantes aux médicaments. La résistance aux antibiotiques chez les souches d’E. coli isoléesà partir des échantillons provenant des veaux était significativement plus élevée que celles obtenues à partir des volailles. De plus, les souches des phylogroupes B1 et D présentaient la résistance antimicrobienne la plus élevée et la plus faible. Au moins, un gène codant pour l’intégrone a été détecté en 23 souches (36.5%) et l’intégrone de Classe I montraitla prévalence la plus élevée. En conclusion, ce travail de recherche a fourni des informations de base sur l'ampleur du problème de résistance et son contexte génétique chez les souches d’E. coli isolées chez des animaux domestiques de Téhéran, Iran. De plus, l’efficacité de la technologie de réseau d'oligonucléotides dans la discrimination de différents génotypes surune courte durée a été confirmée dans cette recherche.

Keywords [French]

  • Escherichia coli
  • Intégrone
  • Gènes de résistance
Baldy-Chudzik, K., Mackiewicz, P. and Stosik, M., 2008. Phylogenetic background, virulence gene profiles, and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo. Vet microbiol 131(1), 173-184.
Bilitewski, U., 2009. DNA microarrays: an introduction to the technology. Methods Mol Biol 509, 1-14.
Bruant, G., Maynard, C., Bekal, S., Gaucher, I., Masson, L., Brousseau, R. and Harel, J., 2006. Development and validation of an oligonucleotide microarray for detection of multiple virulence and antimicrobial resistance genes in Escherichia coli. Applied and environ microbiol 72(5), 3780-3784.
Bumgarner, R., 2013. DNA microarrays: Types, Applications and their future. Curr Protoc Mol Biol 0 22: Unit–22.1.
Call, D. R., Bakko, M. K., Krug, M. J., Roberts, M. C., 2003. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother 47, 3290-3295.
Carattoli, A., 2008. Animal reservoirs for extended spectrum β‐lactamase producers. Clin Microbiol and Infect 14(s1), 117-123.
Clermont, O., Bonacorsi, S. and Bingen, E., 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl environ microbiol 66(10), 4555-4558.
 Davies, J., 2007. Microbes have the last word. EMBO Rep 8, 616 - 21.
Escobar‐Páramo, P., Menac’h, L., Le Gall, T., Amorin, C., Gouriou, S., Picard, B., Skurnik, D. and Denamur, E., 2006. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol 8(11), 1975-1984.
Ewers, C., Bethe, A., Semmler, T., Guenther, S. and Wieler, L.H., 2012. Extended‐spectrum β‐lactamase‐producing and AmpC‐producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol and Infec 18(7), 646-655.
Gordon, D.M. and Cowling, A., 2003. The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149(12), 3575-3586.
Gordon, D.M., Clermont, O., Tolley, H. and Denamur, E., 2008. Assigning Escherichia coli strains to phylogenetic groups: multi‐locus sequence typing versus the PCR triplex method. Environ microbiol 10(10), 2484-2496.
Guerra, B., Junker, E., Schroeter, A., Malorny, B., Lehmann, S. and Helmuth, R., 2003. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Antimicrobial Chemotherapy 52(3), 489-492.
Kaper, J.B., Nataro, J.P. and Mobley, H.L., 2004. Pathogenic escherichia coli. Nat Rev Microbiol 2(2), 123-140.
 Mammeri, H., Van De Loo, M., Poirel, L., Martinez-Martinez, L. and Nordmann, P., 2005. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrobial Agents and Chemotherapy 49(1), 71-76.
Salehi, T.Z., Derakhshandeh, A., Tadjbakhsh, H. and Karimi, V., 2013. Comparison and phylogenetic analysis of the ISS gene in two predominant avian pathogenic E. coli serogroups isolated from avian colibacillosis in Iran. Research in veterinary science, 94(1), 5-8.
 Salehi, T.Z., Tonelli, A., Mazza, A., Staji, H., Badagliacca, P., Tamai, I.A., Jamshidi, R., Harel, J., Lelli, R. and Masson, L., 2012. Genetic characterization of Escherichia coli O157: H7 strains isolated from the one-humped camel (Camelus dromedarius) by using microarray DNA technology. Mol biotech 51(3), 283-288.
Schwarz, S. and Chaslus-Dancla, E., 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res 32(3-4), 201-225.
 Schwarz, S. and Chaslus-Dancla, E., 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet res 32(3-4), 201-225.
Shahaboddin, E., Staji, H., 2015. Determination and comparison of phylogenetic groups of E. coli strains isolated from wild birds and human with urinary infections in Semnan city by using multiplex PCR technique [master’s thesis]. Faculty of Veterinary Medicine, Semnan University.
Smet, A., Martel, A., Persoons, D., Dewulf, J., Heyndrickx, M., Herman, L., Haesebrouck, F. and Butaye, P., 2010. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS microbiol rev 34(3), 295-316.
Staji, H., Salehi, T.Z., Dastjerdi, A.M. and Tonelli, A., 2012. Pathotyping of isolated Escherichia coli from domesticated calves and poultry using modern DNA microarray technique. J Vet Res 67(1), 1-9.
Staji, H., Tonelli, A., Javaheri-Vayeghan, A., Changizi, E. and Salimi-Bejestani, M.R., 2015. Distribution of Shiga toxin genes subtypes in B1 phylotypes of Escherichia coli isolated from calves suffering from diarrhea in Tehran suburb using DNA oligonucleotide arrays. Iran J Microbiol 7(4), 191.
Wang, H. Y., Malek, R. L., Kwitek, A. E., Greene, A. S., Luu, T. V., Behbahani, B. et. al., 2003. Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarray. Genome Biol 4, 5.
Wu, L., Thompson, D. K., Li, G., Hurt, R. A., Tiedje, J. M., Zhou, J., 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67, 5780-5790.
Youssefi, M., Rahimi, M., 2010. Haemoproteus Columbae in Columba livia domestica of Three Areas in Iran in 2010. Glob Vet 7, 593-5.