Optimizing the process of inactivating influenza virus subtype H9N2 by formalin in the production of killed avian influenza vaccine

Document Type : Short Communication

Authors

1 Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz,Iran

2 Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran

3 Department of Research and Development, Razi Vaccine and Serum Research Institute Northwest Branch, Agricultural Research, Education and Extension Organization,Marand, Iran

Abstract

Avian influenza is one of the most important diseases in avian industry, which also threats human population. Thus, vaccination is necessary for controlling this viral disease. In this study, killed vaccine of avian influenza subtype H9N2 and formalin solution (for virus inactivation) were used. It is necessary to study the effect of different factors such as formalin concentration, as well as incubation temperature and duration on inactivation process. For this purpose, after preparation and measurement of antibody titers of vaccinal strains of avian influenza, 27 experimental samples of H9N2 avian influenza virus were prepared at different formalin concentrations (0.1%, 0.05%, and 0.025%), at different incubation temperatures (4 °C, 25 °C, and 37 °C), and in different incubation durations (12, 18, and 24 h). In addition, three control samples were prepared at three different test temperatures without adding formalin. All the samples were evaluated by inactivation test, hemagglutination assay, and measurement of free formaldehyde. All the experiments were repeated within three consecutive periods. Considering the findings and destructive effects of long incubation durations at 37°C on antigens, the temperature of 25 °C was more suitable. Furthermore, the free formaldehyde amounts at different concentrations at 25 °C were slightly different in comparison with 37 °C. Therefore, formalin concentration of 0.1% at 25 °C completely inactivated the virus within 24 h and was proposed as the optimal condition.

Keywords

Main Subjects


Article Title [French]

Optimisation de la procédure d’inactivation par la formalin edu sous-type H9N2 du virus de l’influenza pour la production de vaccins inactivés

Abstract [French]

L’influenza aviaire est l’une des maladies les plus importantes touchant l’industrie avicole, qui menace également la santé des populations humaines. La vaccination est donc nécessaire pour le contrôle de cette maladie. Afin d’optimiser la procédure d’inactivation du sous-type H9N2 du virus de l’influenza aviaire, les effets de facteurs variés, comme la concentration de formaline ainsi que les durées et températures optimales d’incubation ont été étudiés. A cet effet, après la préparation et l’évaluation des titres d’anticorps induits par les souches vaccinales de l’influenza aviaire, 27 échantillons expérimentaux du sous-type H9N2 du virus de l’influenza aviaire ont été préparés à différentes concentrations de formaline (0,1%, 0,05%, et 0,025%) ainsi qu’à différentes températures (4 °C, 25 °C et 37 °C) et durées (12 h, 18 h, et 24 h) d’incubation. De plus, 3 échantillons préparés à trois températures différentes et sans formaline ont été utilisés comme témoins. Tous les échantillons ont été ensuite soumis à des tests d’inactivation et d’hémagglutination ainsi qu’à une évaluation du taux de formaldéhyde libre. Toutes ces analyses ont été répétées trois fois. Nos De plus, 3 échantillons préparés à trois températures différentes et sans formaline ont été utilisés comme témoins. Tous les échantillons ont été ensuite soumis à des tests d’inactivation et d’hémagglutination ainsi qu’à une évaluation du taux de formaldéhyde libre. Toutes ces analyses ont été répétées trois fois. Nos résultats ont révélé l’effet délétère d’une incubation prolongée à 37 °C sur les antigènes d’intérêts alors qu’une incubation à 25 °C s’est avérée être plus appropriée. D’autant plus que la formation de formaldéhyde libre différait sensiblement lors des incubations à 25 °C et 37 °C. En résumé, une incubation de 24 h en présence de formaline 0,1% à 25 °C été capable d’inactiver complétement le virus et représente donc la condition optimale proposée dans cette étude.

Keywords [French]

  • Inactivation
  • Formaline
  • Influenza virus H9N2
  • Vaccin influenza aviaire
Abdi, R.D., Amsalu, K., Merera, O., Asfaw, Y., Gelaye, E., Yami, M., Sori, T., 2016. Serological response and protection level evaluation in chickens exposed to grains coated with I2 Newcastle disease virus for effective oral vaccination of village chickens. BMC Vet Res 12, 150.
Alexander, D.J., 2000. A review of avian influenza in different bird species. Vet Microbiol 74, 3-13.
Angin, M., Streeck, H., Wen, F., King, M., Pereyra, F., Altfeld, M., Walker, B.D., Addo, M.M., 2012. Regulatory T cell frequencies do not correlate with breadth or magnitude of HIV-1-specific T cell responses. AIDS Res Hum Retroviruses 28, 749-751.
Appendix, B.P., 2011. Department of health and social services for northern. Irland, p. method A 2.4.18.P.A 411.
Brown, I.H., 2010. Summary of avian influenza activity in Europe, Asia, and Africa, 2006-2009. Avian Dis 54, 187-193.
Butterfield, W.K., Campbell, C.H., 1979. Relationships of influenza a viruses with avian subtype 1 hemagglutinin including the fowl plague viruses. Vet Microbiol 4, 101-107.
Chatchai, S., Jiroj, S., Niwat, C., 2007. Inactivation of avian influenza virus H5N1 with binary ethylenimine solutions. Proceedings on the 8th Asian Pacific Poultry Conference, Swissotel Le Concorde Hotel, Bangkok, Thailand pp. 376-379.
De Benedictis, P., Beato, M.S., Capua, I., 2007. Inactivation of avian influenza viruses by chemical agents and physical conditions: a review. Zoon Pub Health 54, 51-68.
Ghadimipour, R., Khalili, I., Ameghi, A., Ebrahimi, M.M., Ghorbanpour, M., Sedigh-Eteghad, S., Zandiyeh, B., 2013. Evaluating the Effects of Temperature, Time, Shaking and Different Concentrations of Formalin on the Vaccinal Subtypes of Influenza Virus (H9N2) Inactivation. J Vet Microbiol 10, 37-44.
Hilleringmann, M., Jobst, B., Baudner, B.C., 2014. Influenza Cell-Culture Vaccine Production. In: Giese, M. (Ed.), Molecular Vaccines: From Prophylaxis to Therapy - Volume 2, Springer International Publishing, Cham, pp. 823-837.
Jang, Y., Lee, J., So, B., Lee, K., Yun, S., Lee, M., Choe, N., 2014. Evaluation of changes induced by temperature, contact time, and surface in the efficacies of disinfectants against avian influenza virus. Poult Sci 93, 70-76.
Lombardi, M.E., Ladman, B.S., Alphin, R.L., Benson, E.R., 2008. Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis 52, 118-123.
OIE., 2014. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Avian influenza. The World Organisation for Animal Health, Paris.
Portela, A., Digard, P., 2002. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83, 723-734.
Reed, L.J., Muench, H., 1938. A simple method of estimating fifty percent endpoints. Ame J Hygiene 27, 493-497.
Salthammer, T., Mentese, S., Marutzky, R., 2010. Formaldehyde in the indoor environment. Chem Rev 110, 2536-2572.
Shojaei, T.R., Tabatabaei, M., Shawky, S., Salleh, M.A., Bald, D., 2015. A review on emerging diagnostic assay for viral detection: the case of avian influenza virus. Mol Biol Rep 42, 187-199.
Stone, H.D., 1987. Efficacy of avian influenza oil-emulsion vaccines in chickens of various ages. Avian Dis 31, 483-490.
Swayne, D.E., Beck, J.R., Perdue, M.L., Beard, C.W., 2001. Efficacy of vaccines in chickens against highly pathogenic Hong Kong H5N1 avian influenza. Avian Dis 45, 355-365.
Swayne, D.E., Lee, C.W., Spackman, E., 2006. Inactivated North American and European H5N2 avian influenza virus vaccines protect chickens from Asian H5N1 high pathogenicity avian influenza virus. Avian Pathol 35, 141-146.
Tian, G., Zhang, S., Li, Y., Bu, Z., Liu, P., Zhou, J., Li, C., Shi, J., Yu, K., Chen, H., 2005. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 341, 153-162.
Vijayasankaran, N., Li, J., Shawley, R., Chen, A., Shiratori, M., Gawlitzek, M., Li, F., Kiss, R., Amanullah, A., Flickinger, M.C., 2009. Animal Cell Culture Media. Encyclopedia of Industrial Biotechnology, John Wiley & Sons, Inc. 138, 3-10.