Detection of the aadA1 and aac (3)-1V resistance genes in Acinetobacter baumannii

Document Type : Original Articles


1 Department of Biology, College of Education for Pure Science Ibn-Al Haitham, University of Baghdad, Baghdad, Iraq

2 Microbiology Department, College of Medicine, Al-Nahrain University, Baghdad, Iraq


Acinetobacter baumannii is a gram-negative aerobic bacterium that can be found in different environments, such as food, containing vegetables, meat, and fish; moreover, it can be present in soil and freshwater. A. baumannii has globally considered an opportunistic nosocomial bacterium in the healthcare setting contributing to increased morbidity and mortality. The current study aimed to detect the aminoglycoside genes in A. baumannii isolated from different clinical causes. In total, 20 isolates of A. baumannii were obtained from different clinical cases. Bacterial isolate DNA was extracted using a DNA extraction kit. Quantus Fluorometer was used to detect the concentration of the extracted DNA in order to detect the goodness of samples. 1 μl of DNA and 199 μl of diluted QuantiFlour Dye were mixed. After 5 min incubation at room temperature, DNA concentration values were evaluated, and following the initial amplification of the A. baumannii aada1 gene, 20 μl of PCR product with F and R primers were sent to Sanger sequencing. The results of the antimicrobial susceptibility revealed that A. baumannii isolates were resistant to Gentamicin (95%), Amikacin (90%), and Tobramycin (60%). Molecular investigation of the aadA1 and aac (3)-IV genes exhibited that the aadA1 gene was detected in 15% of the isolates. However, the aac (3)-IV gene was not detected in any of the isolates. The gel electrophoresis revealed that the molecular weight of the aadA1 gene was 490bp. The DNA sequence of the aadA1 gene was conducted in this study, and the results exhibited no mutations in all isolates.


Main Subjects

  1. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5(12):939-51.
  2. Balfousias T, Apostolopoulos A, Angelis S, Filippou D, Maris S. Pandrug-resistant Acinetobacter Baumannii Infection Identified in a Non-intensive Care Unit Patient: A Case Study. Cureus. 2019;11(12).
  3. Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol. 2019;10:1601.
  4. Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics and outside-host environment. Int J Mol Sci. 2020;21(15):5498.
  5. Gupta M, Naik AK, Singh SK. Bacteriological profile and antimicrobial resistance patterns of burn wound infections in a tertiary care hospital. Heliyon. 2019;5(12):02956.
  6. Hakyemez IN, Kucukbayrak A, Tas T, Yikilgan AB, Akkaya A, Yasayacak A, et al. Nosocomial Acinetobacter baumannii infections and changing antibiotic resistance. Pak J Med Sci. 2013;29(5):1245.
  7. Seifert H, Baginski R, Schulze A, Pulverer G. The distribution of Acinetobacter species in clinical culture materials. Zentralbl Bakteriol. 1993;279(4):544-52.
  8. Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012;3(3):243-50.
  9. Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020;9(3):119.
  10. Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms. 2020;8(6):935.
  11. Kanafani ZA, Zahreddine N, Tayyar R, Sfeir J, Araj GF, Matar GM, et al. Multi-drug resistant Acinetobacter species: a seven-year experience from a tertiary care center in Lebanon. Antimicrob Resist Infect Control. 2018;7(1):1-8.
  12. Singh JK, Adams FG, Brown MH. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front Microbiol. 2019;9:3301.
  13. Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E, Singh PK, et al. Host-microbe protein interactions during bacterial infection. Chem Biol. 2015;22(11):1521-30.
  14. Nemec A, Dolzani L, Brisse S, van den Broek P, Dijkshoorn L. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J Med Microbiol. 2004;53(12):1233-40.
  15. Plattner M, Gysin M, Haldimann K, Becker K, Hobbie SN. Epidemiologic, phenotypic, and structural characterization of aminoglycoside-resistance gene aac (3)-IV. Int J Mol Sci. 2020;21(17):6133.
  16. Askari N, Momtaz H, Tajbakhsh E. Acinetobacter baumannii in sheep, goat, and camel raw meat: virulence and antibiotic resistance pattern. AIMS Microbiol. 2019;5(3):272.
  17. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual: Cold spring harbor laboratory press; 1989.
  18. Hall T, editor BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser; 1999.
  19. Boone RL, Whitehead B, Avery TM, Lu J, Francis JD, Guevara MA, et al. Analysis of virulence phenotypes and antibiotic resistance in clinical strains of Acinetobacter baumannii isolated in Nashville, Tennessee. BMC Microbiol. 2021;21(1):1-12.
  1. Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis. 2019;19(1):1-9.
  2. Vahdani P, Yaghoubi T, Aminzadeh Z. Hospital acquired antibiotic-resistant Acinetobacter baumannii infections in a 400-bed hospital in Tehran, Iran. Int J Prev Med. 2011;2(3):127.
  3. Askari N, Momtaz H, Tajbakhsh E. Prevalence and phenotypic pattern of antibiotic resistance of Acinetobacter baumannii isolated from different types of raw meat samples in Isfahan, Iran. Vet Med Sci. 2020;6(1):147-53.
  4. Duarte A, Ferreira S, Almeida S, Domingues FC. Clinical isolates of Acinetobacter baumannii from a Portuguese hospital: PFGE characterization, antibiotic susceptibility and biofilm-forming ability. Comp Immunol Microbiol Infect Dis. 2016;45:29-33.
  5. Thummeepak R, Kongthai P, Leungtongkam U, Sitthisak S. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int Microbiol. 2016;19(2):121-9.
  6. Gurung J, Khyriem AB, Banik A, Lyngdoh WV, Choudhury B, Bhattacharyya P. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J Crit Care Med. 2013;17(4):214.
  7. Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis. 2013;13(1):1-12.
  8. Bulens SN, Sarah HY, Walters MS, Jacob JT, Bower C, Reno J, et al. Carbapenem-nonsusceptible Acinetobacter baumannii, 8 US metropolitan areas, 2012–2015. Emerg Infect Dis. 2018;24(4):727.
  9. Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria. Antibiotics. 2019;8(2):37.
  10. Asaad AM, Ansari S, Ajlan SE, Awad SM. Epidemiology of Biofilm Producing Acinetobacter baumannii Nosocomial Isolates from a Tertiary Care Hospital in Egypt: A Cross-Sectional Study. Infect Drug Resis. 2021;14:709.
  11. Kishk R, Soliman N, Nemr N, Eldesouki R, Mahrous N, Gobouri A, et al. Prevalence of Aminoglycoside Resistance and Aminoglycoside Modifying Enzymes in Acinetobacter baumannii Among Intensive Care Unit Patients, Ismailia, Egypt. Infect Drug Resis. 2021;14:143.
  12. Farsiani H, Mosavat A, Soleimanpour S, Nasab MN, Salimizand H, Jamehdar SA, et al. Limited genetic diversity and extensive antimicrobial resistance in clinical isolates of Acinetobacter baumannii in north-east Iran. J Med Microbiol. 2015;64(7):767-73.
  13. Aliakbarzade K, Farajnia S, Nik AK, Zarei F, Tanomand A. Prevalence of aminoglycoside resistance genes in Acinetobacter baumannii isolates. Jundishapur J Microbiol. 2014;7(10).
  14. Salimizand H, Zomorodi AR, Mansury D, Khakshoor M, Azizi O, Khodaparast S, et al. Diversity of aminoglycoside modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii and Acinetobacter nosocomialis species in Iran; wide distribution of aadA1 and armA. Infect Genet Evol. 2018;66:195-9.
  15. Mortazavi SM, Farshadzadeh Z, Janabadi S, Musavi M, Shahi F, Moradi M, et al. Evaluating the frequency of carbapenem and aminoglycoside resistance genes among clinical isolates of Acinetobacter baumannii from Ahvaz, south-west Iran. ew Microbes New Infect. 2020;38:100779.
  16. Tavakol M, Momtaz H, Mohajeri P, Shokoohizadeh L, Tajbakhsh E. Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. Antimicrob Resist Infect Control. 2018;7(1):1-11.
  17. El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv. 2021;28(1):906-19.
  18. Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018;11:1249.
  19. Chen L-K, Liu Y-L, Hu A, Chang K-C, Lin N-T, Lai M-J, et al. Potential of bacteriophage ΦAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol. 2013;13(1):1-10.
  20. Davies J, O'Connor S. Enzymatic modification of aminoglycoside antibiotics: 3-N-acetyltransferase with broad specificity that determines resistance to the novel aminoglycoside apramycin. Antimicrob. Agents Chemother. 1978;14(1):69-72.