Isolation, Characterization, and Efficacy of Three Lytic Phages Infecting Multidrug-Resistant Salmonella Serovars from Poultry Farms in Egypt

Document Type : Original Articles


1 Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt

2 Department of Microbiology and Botany, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt

3 Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt

4 Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany


Multidrug-resistant (MDR) Salmonella serovars are considered a significant threat to veterinary and public health. Developing new antimicrobial compounds that can treat the infection caused by these notorious pathogens is a big challenge. Bacteriophages can be adsorbed on and inhibit the growth of bacteria, providing optimal and promising alternatives to chemical antimicrobial compounds against foodborne pathogens due to their abundance in nature and high host specificity. The objective of the current study was to isolate and characterize new phages from poultry farms and sewage and to evaluate their efficacy against S. Enteritidis isolates. The study reports three lytic phages designated as ϕSET1, ϕSET2, and ϕSET3 isolated from poultry carcasses and sewage samples in Qalubiya governorate Egypt. The effectiveness of phages was evaluated against multidrug-resistant S. Enteritidis strains. Electron microscopy showed that these phages belong to the Siphoviridae family. Phages were tested against 13 bacterial strains to determine their host range. They could infect four S. Enteritidis and one S. Typhimurium; however, they did not infect other tested bacterial species, indicating their narrow infectivity. The bacteriophage's single-step growth curves revealed a latent period of 20 min for ϕSET1 and 30 min for ϕSET2 and ϕSET3. The isolated Salmonella phages prevented the growth of S. Enteritidis for up to 18 hrs. The findings revealed that Salmonella phages could be used as alternative natural antibacterial compounds to combat infection with MDR S. Enteritidis in the poultry industry and represent a step forward to using large panels of phages for eliminating Salmonella from the food chain.


Main Subjects

Article Title [French]

Isolement, Caractérisation et Efficacité de Trois Phages Lytiques Infectant des Sérovars de Salmonella Multirésistants Provenant d'Elevages Avicoles en Égypte

Abstract [French]

Les sérovars de Salmonella multirésistants (MDR) sont considérés comme une menace importante pour la santé vétérinaire et publique. Le développement de nouveaux composés antimicrobiens capables de traiter l'infection causée par ces agents pathogènes notoires est un grand défi. Les bactériophages peuvent être adsorbés et inhiber la croissance des bactéries, offrant des alternatives optimales et prometteuses aux composés antimicrobiens chimiques contre les agents pathogènes d'origine alimentaire en raison de leur abondance dans la nature et de leur spécificité élevée pour l'hôte. L'objectif de la présente étude était d'isoler et de caractériser de nouveaux phages provenant de fermes avicoles et d'eaux usées et d'évaluer leur efficacité contre les isolats de S. Enteritidis. L'étude rapporte trois phages lytiques désignés comme ϕSET1, ϕSET2 et ϕSET3 isolés de carcasses de volaille et d'échantillons d'eaux usées dans le gouvernorat de Qalubiya en Égypte. L'efficacité des phages a été évaluée contre des souches multirésistantes de S. Enteritidis. La microscopie électronique a montré que ces phages appartiennent à la famille des Siphoviridae. Les phages ont été testés contre 13 souches bactériennes pour déterminer leur gamme d'hôtes. Ils pourraient infecter quatre S. Enteritidis et un S. Typhimurium; cependant, ils n'ont pas infecté d'autres espèces bactériennes testées, ce qui indique leur infectivité étroite. Les courbes de croissance en une étape du bactériophage ont révélé une période de latence de 20 min pour SET1 et de 30 min pour ϕSET2 et ϕSET3. Les phages de Salmonella isolés ont empêché la croissance de S. Enteritidis jusqu'à 18 heures. Les résultats ont révélé que les phages de Salmonella pourraient être utilisés comme composés antibactériens naturels alternatifs pour lutter contre l'infection par MDR S. Enteritidis dans l'industrie avicole et représentent un pas en avant vers l'utilisation de grands panels de phages pour éliminer Salmonella de la chaîne alimentaire.

Keywords [French]

  • S. enteritidis
  • Bactériophage
  • Siphoviridae
  • Volaille
  1. Afshari A, Baratpour A, Khanzade S, Jamshidi A. Salmonella Enteritidis and Salmonella Typhimorium identification in poultry carcasses. Iran J Microbiol. 2018;10(1):45-50.
  2. Vestby LK, Møretrø T, Langsrud S, Heir E, Nesse LL. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet Res. 2009;5:20.
  3. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8(8):887-900.
  4. Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev. 2002;26(2):141-8.
  5. Alghoribi MF, Doumith M, Alrodayyan M, Al Zayer M, Köster WL, Muhanna A, et al. S. Enteritidis and S. Typhimurium Harboring SPI-1 and SPI-2 Are the Predominant Serotypes Associated With Human Salmonellosis in Saudi Arabia. Front Cell Infect Microbiol. 2019;9:187.
  6. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-83.
  7. Sabry MA, Abdel-Moein KA, Abdel-Kader F, Hamza E. Extended-spectrum β-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication. J Glob Antimicrob Resist. 2020;22:742-8.
  8. Awad A, Gwida M, Khalifa E, Sadat A. Phenotypes, antibacterial-resistant profile, and virulence-associated genes of Salmonella serovars isolated from retail chicken meat in Egypt. Vet World. 2020;13(3):440-5.
  9. Sedeik ME, El-Shall NA, Awad AM, Elfeky SM, Abd El-Hack ME, Hussein EOS, et al. Isolation, conventional and molecular characterization of Salmonella spp. from newly hatched broiler chicks. AMB Express. 2019;9(1):136.
  10. Bolan NS, Szogi AA, Chuasavathi T, Seshadri B, Rothrock MJ, Panneerselvam P. Uses and management of poultry litter. Worlds Poult Sci J. 2010;66(4):673-98.
  11. Line JE, Bailey JS. Effect of on-farm litter acidification treatments on Campylobacter and Salmonella populations in commercial broiler houses in northeast Georgia. Poult Sci. 2006;85(9):1529-34.
  12. Sulakvelidze A, Alavidze Z, Morris JG, Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649-59.
  13. Akhtar M, Viazis S, Diez-Gonzalez F. Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control. 2014;38:67-74.
  14. Toro H, Price SB, McKee AS, Hoerr FJ, Krehling J, Perdue M, et al. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis. 2005;49(1):118-24.
  15. Ackermann HW, Audurier A, Berthiaume L, Jones LA, Mayo JA, Vidaver AK. Guidelines for bacteriophage characterization. Adv Virus Res. 1978;23:1-24.
  16. Kasman LM, Porter LD. Bacteriophages. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.; 2021.
  17. Borie C, Sánchez ML, Navarro C, Ramírez S, Morales MA, Retamales J, et al. Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella enteritidis infection in chickens. Avian Dis. 2009;53(2):250-4.
  18. Mooijman KA, Pielaat A, Kuijpers AFA. Validation of EN ISO 6579-1 - Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1 detection of Salmonella spp. Int J Food Microbiol. 2019;288:3-12.
  19. CSLI. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; CSLI Document M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. 1999.
  20. Abdel-Haliem M, Askora A. Isolation and characterization of bacteriophages of Helicobacter pylori isolated from Egypt. . Future Virol. 2013;8:821-6.
  21. Mahmoud M, Askora A, Barakat AB, Rabie OE-F, Hassan SE. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int J Food Microbiol. 2018;266:8-13.
  22. Hyman P, Abedon ST. Practical methods for determining phage growth parameters. Methods Mol Biol. 2009;501:175-202.
  23. Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 2001.
  24. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016;13(11):e1002184.
  25. Elkenany R, Elsayed MM, Zakaria AI, El-Sayed SA, Rizk MA. Antimicrobial resistance profiles and virulence genotyping of Salmonella enterica serovars recovered from broiler chickens and chicken carcasses in Egypt. BMC Vet Res. 2019;15(1):124.
  26. Elkenany RM, Eladl AH, El-Shafei RA. Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. J Glob Antimicrob Resist. 2018;14:202-8.
  27. Mahmoud M, Askora A, Barakat AB, Rabie OE, Hassan SE. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int J Food Microbiol. 2018;266:8-13.
  28. Sharma CS, Ates A, Joseph P, Nannapaneni R, Kiess A. Reduction of Salmonella in skinless chicken breast fillets by lauric arginate surface application. Poult Sci. 2013;92(5):1419-24.
  29. Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM. Poult Sci. 2016;95(3):668-75.
  30. El-Dougdoug NK, Cucic S, Abdelhamid AG, Brovko L, Kropinski AM, Griffiths MW, et al. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol. 2019;293:60-71.
  31. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111-4.
  32. Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, et al. How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections. Infect Drug Resist. 2020;13:45-61.
  33. Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162-73.
  34. Jun-Hyun O. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review. J Microbiol Biotechnol. 2017;27(12):2075-88.
  35. Abedon ST. Phage population growth: constraints, games, adaptation. 15, editor: Cambridge University Press; 2008.
  36. Mohamed A, Taha O, El-Sherif HM, Connerton PL, Hooton SPT, Bassim ND, et al. Bacteriophage ZCSE2 is a Potent Antimicrobial Against Salmonella enterica Serovars: Ultrastructure, Genomics and Efficacy. Viruses. 2020;12(4).
  37. Sorour HK, Gaber AF, Hosny RA. Evaluation of the efficiency of using Salmonella Kentucky and Escherichia coli O119 bacteriophages in the treatment and prevention of salmonellosis and colibacillosis in broiler chickens. Lett Appl Microbiol. 2020;71(4):345-50.
  38. Esmael A, Azab E, Gobouri AA, Nasr-Eldin MA, Moustafa MMA, Mohamed SA, et al. Isolation and Characterization of Two Lytic Bacteriophages Infecting a Multi-Drug Resistant Salmonella Typhimurium and Their Efficacy to Combat Salmonellosis in Ready-to-Use Foods. Microorganisms. 2021;9(2).
  39. El-Shibiny A, El-Sahhar S, Adel M. Phage applications for improving food safety and infection control in Egypt. J Appl Microbiol. 2017;123(2):556-67.
  40. Nabil NM, Tawakol MM, Hassan HM. Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect Ecol Epidemiol. 2018;8(1):1539056.
  41. Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, et al. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int J Food Microbiol. 2014;172:92-101.
  42. O'Flynn G, Coffey A, Fitzgerald GF, Ross RP. The newly isolated lytic bacteriophages st104a and st104b are highly virulent against Salmonella enterica. J Appl Microbiol. 2006;101(1):251-9.
  43. Ahiwale SS, Bankar AV, Tagunde SN, Zinjarde S, Ackermann HW, Kapadnis BP. Isolation and characterization of a rare waterborne lytic phage of Salmonella enterica serovar Paratyphi B. Can J Microbiol. 2013;59(5):318-23.
  44. Müller-Merbach M, Kohler K, Hinrichs J. Environmental factors for phage-induced fermentation problems: replication and adsorption of the Lactococcus lactis phage P008 as influenced by temperature and pH. Food Microbiol. 2007;24(7-8):695-702.
  45. Abedon ST. Selection for bacteriophage latent period length by bacterial density: A theoretical examination. Microb Ecol. 1989;18(2):79-88.
  46. Abedon ST, Herschler TD, Stopar D. Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol. 2001;67(9):4233-41.
  47. Wang IN. Lysis timing and bacteriophage fitness. Genetics. 2006;172(1):17-26.
  48. Bao H, Zhou Y, Shahin K, Zhang H, Cao F, Pang M, et al. The complete genome of lytic Salmonella phage vB_SenM-PA13076 and therapeutic potency in the treatment of lethal Salmonella Enteritidis infections in mice. Microbiol Res. 2020;237:126471.
  1. Milho C, Silva MD, Melo L, Santos S, Azeredo J, Sillankorva S. Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling. 2018;34(7):753-68.
  2. Li P, Zhang X, Xie X, Tu Z, Gu J, Zhang A. Characterization and whole-genome sequencing of broad-host-range Salmonella-specific bacteriophages for bio-control. Microb Pathog. 2020;143:104119.
  3. Tellez-Isaias G, Vuong CN, Graham BD, Selby CM, Graham LE, Se˜nas-Cuesta R, et al. Developing probiotics, prebiotics, and organic acids to control Salmonella spp. in commercial turkeys at the University of Arkansas, USA. Ger J Vet Res 2021;1(3):7-12.