Plasmid-Mediated Mechanism of Quinolone Resistance on E. coli Isolates from Different Clinical Samples

Document Type : Original Articles

Authors

1 College of Biotechnology, Al-Qasim Green University, Babylon Province, Iraq

2 Collage of Medicine, Microbiological Department, University of Babylon Province, Iraq

Abstract

Quinolone antimicrobials are widely used in clinical medicine due to their wide spectrum with high tissue penetration and ease of use; but increasing resistance with clinical use appears to be common in some bacterial pathogens, including Escherichia coli (E.coli). The aim of this study was to investigate plasmid-mediated quinolone resistance determinants (PMQR) including, qnrA, qnrB, and qnrS as the emerging mechanisms of quinolone resistance of E.coli isolates from different clinical sites in Karbala province, Iraq. A total of 200 clinical samples were collected from patients suffering from infections such as UTI, gastro enteritis (diarrhea), vaginitis, and wound infections; 30 samples were diagnosed as E.coli clinical strain from both sexes and different ages after identification by biochemical test, VITEK-2 compact system, and by molecular method using 16Sr DNA marker. Antimicrobial susceptibility and minimal inhibition concentration (MIC) testing for nalidixic acid, norfloxacin, ciprofloxacin, levofloxacin, and gatifloxacin was performed using the broth microdilution method. All strains were screened for PMQR genes qnrA, qnrB, and qnrS by the PCR method after DNA extraction from tested clinical isolates of E.coli. The results showed that E. coli is largely isolated from vaginal (40%) and urine (32%) samples, followed by wound infections (24%) and stools (21%).The high occurrence rate of E. coli(33.33%) isolates was observed in participants aged 31-45 years, while a lower occurrence (10%)was recorded in a group of ˃ 60-year-old female participants. Females have a notably increased frequency of E.coli compared to males, with the female to male ratio being 87%:13%. Molecular investigation showed the total percentage of E.coli isolates harboring qnr genes to be 21/30 (70%); this figure is composed of 14/30 isolates harboring qnr in combined or mixed form (46.66%) and 7/30 (23.33%) isolates harboring qnr in single form (3 isolates harboring qnrA alone, 1 isolate harboring qnrB alone, 3 isolates harboring qnrS alone).The prevalence rates of qnrA, qnrB, and qnrS were 40%, 43.33%, and 53.33%, respectively. The results also showed that among E.coli isolates encoding qnr genes A, B, and S, 24%, 12%, and 36% were resistant to nalidixic acid, respectively. Among those isolates carrying qnrA, qnrB, and qnrS genes, 15.8%, 5.3%, and 26.3%, respectively, were resistant to ciprofloxacin. Moreover, Norfloxacin resistance was seen in 20.0%, 5.0%, and 30.0% of E.coli isolates harboring qnr A, B, and S genes, respectively. Levofloxacin resistance was seen in 37.5%, 75.0%, and 37.5% of the isolates carrying the qnrA, qnrB, and qnrS genes, respectively. The lowest resistance rates of qnrA, B, and S-positive E.coli strains were against gatifloxacin (0,0, and 25%, respectively).A high prevalence of qnr genes enhances the increasing resistance rate of E.coli against the quinolone antibiotic under study.

Keywords

Main Subjects


Article Title [French]

Mécanisme a Médiation Plasmidique de la Résistance aux Quinolones sur les Isolats d'E. coli Provenant de Différents Echantillons Cliniques

Abstract [French]

Les quinolones antimicrobiennes sont largement utilisées en médecine clinique en raison de leur large spectre, de leur pénétration tissulaire élevée et de leur facilité d'utilisation; mais l'augmentation de la résistance avec l'utilisation clinique semble être courante chez certains agents pathogènes bactériens, y compris Escherichia coli (E. coli). Le but de cette étude était d'étudier les déterminants de la résistance aux quinolones à médiation plasmidique (RQMP), y compris qnrA, qnrB et qnrS en tant que mécanismes émergents de la résistance aux quinolones des isolats d'E. coli provenant de différents sites cliniques dans la province de Karbala, en Irak. Au total, 200 échantillons cliniques ont été collectés auprès de patients souffrant d'infections telles que les infections urinaires, la gastro-entérite (diarrhée), la vaginite et les infections des plaies; 30 échantillons ont été diagnostiqués comme étant une souche clinique d'E. coli des deux sexes et d'âges différents après identification par test biochimique, système compact VITEK-2 et par méthode moléculaire utilisant le marqueur ADN 16Sr. Les tests de sensibilité aux antimicrobiens et de concentration minimale d'inhibition (CMI) pour l'acide nalidixique, la norfloxacine, la ciprofloxacine, la lévofloxacine et la gatifloxacine ont été effectués à l'aide de la méthode de microdilution en bouillon. Toutes les souches ont été criblées pour les gènes PMQR qnrA, qnrB et qnrS par la méthode RCP après extraction de l'ADN à partir d'isolats cliniques testés d'E. coli. Les résultats ont montré qu'E. coli est largement isolé des échantillons vaginaux (40%) et d'urine (32%), suivi des infections des plaies (24%) et des selles (21%). Le taux d'occurrence élevé des isolats d'E. coli (33.33%) a été observé chez les participants âgés de 31 à 45 ans, tandis qu'un taux d'occurrence plus faible (10%) a été enregistré dans un groupe de participantes ˃ 60 ans. Les femelles ont une fréquence considérablement plus élevée d'E. coli par rapport aux mâles, le ratio femelle/mâle étant de 87%: 13%. L'enquête moléculaire a montré que le pourcentage total d'isolats d'E. coli contenant des gènes qnr était de 21/30 (70%); ce chiffre est composé de 14/30 isolats hébergeant qnr sous forme combinée ou mixte (46.66%) et 7/30 (23.33%) isolats hébergeant qnr sous forme unique (3 isolats hébergeant qnrA seul, 1 isolat hébergeant qnrB seul, 3 isolats hébergeant qnrS seul). Les taux de prévalence de qnrA, qnrB et qnrS étaient de 40%, 43.33% et 53.33%, respectivement. Les résultats ont également montré que parmi les isolats d'E. coli codant pour les gènes qnr A, B et S, 24%, 12% et 36% étaient respectivement résistants à l'acide nalidixique. Parmi les isolats portant les gènes qnrA, qnrB et qnrS, 15.8%, 5.3% et 26.3%, respectivement, étaient résistants à la ciprofloxacine. De plus, une résistance à la norfloxacine a été observée dans 20.0%, 5.0% et 30.0% des isolats d'E. coli hébergeant les gènes qnr A, B et S, respectivement. Une résistance à la lévofloxacine a été observée dans 37.5%, 75.0% et 37.5% des isolats portant les gènes qnrA, qnrB et qnrS, respectivement. Les taux de résistance les plus faibles des souches d'E. coli qnrA, B et S-positives étaient contre la gatifloxacine (0, 0, et 25%, respectivement). Une forte prévalence des gènes qnr augmente le taux de résistance croissant d'E. coli contre l'antibiotique quinolone à l'étude.

Keywords [French]

  • Qnr
  • antibiotiques quinolones
  • E. coli
  • résistance à médiation plasmidique
  1. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14:13.
  2. Gholamhossein H, Ali D, Mahmood Sheikh F, Soudeh Khanamani F-P, Ebrahim Rezazadeh Z, Shokrollah A. Resistance pattern of Escherichia coli to levofloxacin in Iran: a narrative review. Iranian Journal of Microbiology. 2020;12(3.(
  3. Gosling RJ, Clouting CS, Randall LP, Horton RA, Davies RH. Ciprofloxacin resistance in E. coli isolated from turkeys in Great Britain. Avian Pathol. 2012;41(1):83-9.
  4. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354:12-31.
  5. Machuca J, Briales A, Labrador G, Diaz-de-Alba P, Lopez-Rojas R, Docobo-Perez F, et al. Interplay between plasmid-mediated and chromosomal-mediated fluoroquinolone resistance and bacterial fitness in Escherichia coli. J Antimicrob Chemother. 2014;69(12):3203-15.
  6. Machuca J, Ortiz M, Recacha E, Diaz-De-Alba P, Docobo-Perez F, Rodriguez-Martinez JM, et al. Impact of AAC(6')-Ib-cr in combination with chromosomal-mediated mechanisms on clinical quinolone resistance in Escherichia coli. J Antimicrob Chemother. 2016;71(11):3066-71.
  7. Yamasaki E, Yamada C, Jin X, Nair GB, Kurazono H, Yamamoto S. Expression of marA is remarkably increased from the early stage of development of fluoroquinolone-resistance in uropathogenic Escherichia coli. J Infect Chemother. 2015;21(2):105-9.
  8. Huang SY, Zhu XQ, Wang Y, Liu HB, Dai L, He JK, et al. Co-carriage of qnrS1, floR, and bla(CTX-M-14) on a multidrug-resistant plasmid in Escherichia coli isolated from pigs. Foodborne Pathog Dis. 2012;9(10):896-901.
  9. Slettemeas JS, Sunde M, Ulstad CR, Norstrom M, Wester AL, Urdahl AM. Occurrence and characterization of quinolone resistant Escherichia coli from Norwegian turkey meat and complete sequence of an IncX1 plasmid encoding qnrS1. PLoS One. 2019;14(3):e0212936.
  10. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749-55.
  11. Andrews JM, Bradley JE, Wise R. Comparison of 'E' test with conventional agar MIC. J Antimicrob Chemother. 1993;31(5):802-3.
  12. (CLSI) CaLSI. Performance standard for antimicrobial susceptibility testing 27 th ed ed. Wayne, PA, USA: CLSI supplement M100 Clinical and Laboratory Standards Institute; 2020.
  13. Green MR, Sambrook J. Molecular Cloning: A Laboratory Manual: Cold Spring Harbor Laboratory Press. 2012.
  14. Lodish H, Berk A, Matsudaira P, Kaiser C, Krieger M, Scott M, et al. Molecular Cell Biology. 5th ed ed. New York: W. H. Freeman; 2004.
  15. Varughese LR, Rajpoot M, Goyal S, Mehra R, Chhokar V, Beniwal V. Analytical profiling of mutations in quinolone resistance determining region of gyrA gene among UPEC. PLoS One. 2018;13(1):e0190729.
  16. Shams E, Firoozeh F, Moniri R, Zibaei M. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Extended-Spectrum beta -Lactamase-Producing Klebsiella pneumoniae Human Isolates in Iran. J Pathog. 2015;2015:434391.
  17. AL-saadi S. Molecular Characterization of Some Virulence Factors of Clinical Isolates of Escherichia coli. Iraq: Babylon University; 2018.
  18. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and Infection. 2003;5(5):449-56.
  19. Hamza H. Plasmid-Mediated Quinolone Resistance Genes and Phylogenetic groups Detection in Uropathogenic Escherichia coli Isolated from Babylon Hospitals. Iraq: Babylon University; 2019.
  20. Brusch J. Urinary Tract Infection in Males: American Family Physician; 2019.
  21. Parvin K, Rahman N, Rahman M, Islam M. Isolation and Characterization of Microflora from Human Urine. Microbes and Health. 2014;2.
  22. Otaiwi MS, Tarrad JK, AL-Yasari HF. Prevalence of E. coli Serotypes Among Diarrheal Patients in Hilla City, Iraq2019.
  23. Aljanaby A, Alfaham Q. Phenotypic and Molecular Characterization of some Virulence Factors in Multidrug Resistance Escherichia coli Isolated from Different Clinical Infections in Iraq. American Journal of Biochemistry and Molecular Biology. 2017;7:65-78.
  24. Hassan R, Tantawy M, Gouda NA, Elzayat MG, Gabra S, Nabih A, et al. Author Correction: Genotypic characterization of multiple drug resistant Escherichia coli isolates from a pediatric cancer hospital in Egypt. Sci Rep. 2020;10(1):7415.
  25. Al-Mayahie SM. Phenotypic and genotypic comparison of ESBL production by vaginal Escherichia coli isolates from pregnant and non-pregnant women. Ann Clin Microbiol Antimicrob. 2013;12:7.
  26. Ali F. Distribution of CTX-M gene among Escherichia coli strains isolated from different clinical samples in Erbil City Introduction. 2018:87-90.
  27. Hassan Abdulqader H, Towfeeq Saadi A. The Distribution of Pathogens, Risk Factors and Their Antimicrobial Susceptibility Patterns Among Post-Surgical Site Infection in Rizgari Teaching Hospital in Erbil/Kurdistan Region/Iraq. Journal of Duhok University. 2019;22(1):1-10.
  28. Adhikari K, Basnyat S, Shrestha B. Prevalence of Multidrug-Resistant and Extended-spectrum Betalactamase Producing Bacterial Isolates from Infected Wounds of patients in Kathmandu Model Hospital. Nepal J Sci Technol. 2020;19: 171-179.
  29. Gessese YA, Damessa DL, Amare MM, Bahta YH, Shifera AD, Tasew FS, et al. Urinary pathogenic bacterial profile, antibiogram of isolates and associated risk factors among pregnant women in Ambo town, Central Ethiopia: a cross-sectional study. Antimicrob Resist Infect Control. 2017;6:132.
  30. Naji E, Ali M, Pirko E. The Relationship between Phylogenic Typing and Antimicrobial Susceptibility Patterns for Escherichia coli Isolated from UTIs at Many Hospitals in Baghdad City. Iraqi National Journal of Nursing Specialties. 2017;30(2):1-12.
  31. Ali I, Rafaque Z, Ahmed S, Malik S, Dasti JI. Prevalence of multi-drug resistant uropathogenic Escherichia coli in Potohar region of Pakistan. Asian Pacific Journal of Tropical Biomedicine. 2016;6(1):60-6.
  32. Ekwealor PA, Ugwu MC, Ezeobi I, Amalukwe G, Ugwu BC, Okezie U, et al. Antimicrobial Evaluation of Bacterial Isolates from Urine Specimen of Patients with Complaints of Urinary Tract Infections in Awka, Nigeria. Int J Microbiol. 2016;2016:9740273.
  33. Tabasi M, Asadi Karam MR, Habibi M, Yekaninejad MS, Bouzari S. Phenotypic Assays to Determine Virulence Factors of Uropathogenic Escherichia coli (UPEC) Isolates and their Correlation with Antibiotic Resistance Pattern. Osong Public Health Res Perspect. 2015;6(4):261-8.
  34. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev. 2012;36(3):616-48.
  35. Dawood WS. Molecular and susceptibility Study of Antibiotic Resistance Genes in E. coli Isolated from Selected Iraqi Patients. Systematic Reviews in Pharmacy. 2020;11(9):214-23.
  36. Prakapaite R, Saab F, Planciuniene R, Petraitis V, Walsh TJ, Petraitiene R, et al. Molecular Characterization of Uropathogenic Escherichia coli Reveals Emergence of Drug Resistant O15, O22 and O25 Serogroups. Medicina (Kaunas, Lithuania). 2019;55(11).
  37. FarajzadehSheikh A, Veisi H, Shahin M, Getso M, Farahani A. Frequency of quinolone resistance genes among extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains isolated from urinary tract infections. Trop Med Health. 2019;47:19.
  38. Nsofor CM, Tattfeng MY, Nsofor CA. High prevalence of qnrA and qnrB genes among fluoroquinolone-resistant Escherichia coli isolates from a tertiary hospital in Southern Nigeria. Bulletin of the National Research Centre. 2021;45(1):26.
  39. Mokhtari-Farsani A, Doosti A, Mohammadalipour Z. WITHDRAWN: Presence of Qnr genes related to resistance to quinolones, first-, second-, and third-generation in diarrheagenic Escherichia coli. Journal of Patient Safety & Infection Control. 2016.
  40. Alm'amoori K, Hadi ZJand Almohana A. Molecular Investigation of Plasmid-Mediated Quinolone Resistant Genes among aminoglycoside-resistant uropathogenic Escherichia coli Isolates from Babylon Hospitals, Iraq. Indian Journal of Forensic Medicine & Toxicology. 2020;14(1):1-10.
  41. Al-Hasnawy HH, Jodi MR, Hamza HJ. Molecular characterization and sequence analysis of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamases producing uropathogenic Escherichia coli in Babylon Province, Iraq. 2018;29(3):129-35.
  42. Salah FD, Soubeiga ST, Ouattara AK, Sadji AY, Metuor-Dabire A, Obiri-Yeboah D, et al. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lome, Togo. Antimicrob Resist Infect Control. 2019;8:104.
  43. Tarchouna M, Ferjani A, Marzouk M. Prevalence of plasmid-mediated quinolone resistance detrminants among clinical isolates of Escherichia coli in a Tunisianhospitals. Int J Curr Microbiol App Sci. 2015;4(3):195-206.
  44. Taha SA, Omar HH, Hassan wH. Characterization of plasmid-mediated qnrA and qnrB genes among Enterobacteriaceae strains: quinolone resistance and ESBL production in Ismailia, Egypt. Egyptian Journal of Medical Human Genetics. 2019;20(1):26.
  45. Malekzadegan Y, Rastegar E, Moradi M, Heidari H, Sedigh Ebrahim-Saraie H. Prevalence of quinolone-resistant uropathogenic Escherichia coli in a tertiary care hospital in south Iran. Infect Drug Resist. 2019;12:1683-9.
  46. Doma AO, Popescu R, Mituletu M, Muntean D, Degi J, Boldea MV, et al. Comparative Evaluation of qnrA, qnrB, and qnrS Genes in Enterobacteriaceae Ciprofloxacin-Resistant Cases, in Swine Units and a Hospital from Western Romania. Antibiotics (Basel). 2020;9(10).
  47. Sedighi I, Arabestani MR, Rahimbakhsh A, Karimitabar Z, Alikhani MY. Dissemination of Extended-Spectrum β-Lactamases and Quinolone Resistance Genes Among Clinical Isolates of Uropathogenic Escherichia coli in Children. 2015;8(7):e19184.
  48. Firoozeh F, Zibaei M, Soleimani-Asl Y. Detection of plasmid-mediated qnr genes among the quinolone-resistant Escherichia coli isolates in Iran. J Infect Dev Ctries. 2014;8(7):818-22.
  49. Hamed SM, Elkhatib WF, El-Mahallawy HA, Helmy MM, Ashour MS, Aboshanab KMA. Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Sci Rep. 2018;8(1):12268.
  50. Saeed N. Detection of Extended Spectrum Beta-lactamase gene production by E. coli isolated from human and broiler in Sulemania province/ Iraq. Journal of Zankoy Sulaimani - Part A. 2014;16:97-107.
  51. Dionisio F, Zilhao R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29-36.
  1. Martinez-Martinez L, Pascual A, Garcia I, Tran J, Jacoby GA. Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother. 2003;51(4):1037-9.
  2. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005;56(3):463-9.