Interaction of Central Glutamatergic and Histaminergic Systems on Food Intake Regulation in Layer Chickens

Document Type : Original Articles

Authors

1 Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran

3 Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

This study purposed to discover the connection between the central glutamatergic and histaminergic systems on feeding behavior in layer chickens. In the first experiment, chicks obtained intracerebroventricular (ICV) injections of saline (control solution), α-FMH (250 nmol), glutamate (300 nmol), and α-FMH + glutamate. Experiments 2-6 were comparable to the first experiment, apart from the birds being injected with chlorpheniramine (histamine H1 receptor antagonist, 300 nmol), famotidine (histamine H2 receptor antagonist, 82 nmol), and thioperamide (histamine H3 receptor antagonist, 300 nmol) instead of α-FMH. In Experiment five, experimental groups were divided into (A) control solution, (B) MK-801 (N-methyl-D-aspartate receptor antagonist, 15 nmol), (C) histamine (300 nmol) and (D) MK-801 + histamine. Experiments 6-10 and Experiment five were similar apart from the ICV injections of CNQX (AMPA receptor antagonist, 360 nm), UBP-302 (Kainate receptor antagonist, 390 nm), AIDA (mGluR1 antagonist, 2 nmol), LY341495 (mGluR2 antagonist, 150 nmol), and UBP1112 (mGluR3 antagonist, 2 nmol) given instead of MK-801. Afterward, cumulative food intake was recorded at30, 60, and 120 minutes after the injection process. According to the results, ICV injection of glutamate considerably reduced food intake (p<0.05). Co-injection of α-FMH + glutamate and/or chlorpheniramine + glutamate reduced the hypophagic influence of glutamate (p<0.05), whereas thioperamide + glutamate augmented glutamate-induced hypophagia in neonatal chicks (p<0.05). Co-injection of MK-801 + histamine or UBP-302 + histamine reduced the hypophagic influence of the histamine (p<0.05), whereas LY341495 + histamine augmented the hypophagic influence of the histamine (p<0.05). Given the results, it is suggested that the effect of the connection between these systems on the process of food intake regulation is mediated by H1 and H3 histamines as well as NMDA, Kainate, and mGluR2 glutamate receptors in neonatal layer chickens.

Keywords

Main Subjects


Article Title [French]

Interaction des Systèmes Glutamatergique et Histaminergique Centraux sur la Régulation de la Prise Alimentaire Chez les Poules Pondeuses

Abstract [French]

Cette étude visait à découvrir le lien entre les systèmes glutamatergique et histaminergique centraux sur le comportement alimentaire des poules pondeuses. Dans la première expérience, les poussins ont reçu des injections intracérébroventriculaires (ICV) de solution saline (solution de contrôle), de α-FMH (250 nmol), de glutamate (300 nmol) et de α-FMH + glutamate. Les expériences 2 à 6 étaient comparables à la première expérience, à l'exception des oiseaux ayant reçu une injection de chlorphéniramine (antagoniste du récepteur de l'histamine H1, 300 nmol), de la famotidine (antagoniste du récepteur de l'histamine H2, 82 nmol) et du thiopéramide (antagoniste du récepteur de l'histamine H3, 300 nmol) au lieu de α-FMH. Dans l'expérience cinq, les groupes expérimentaux ont été divisés en (A) solution de contrôle, (B) MK-801 (antagoniste du récepteur N-méthyl-D-aspartate, 15 nmol), (C) histamine (300 nmol) et (D) MK- 801 + histamine. Les expériences 6-10 et l'expérience cinq étaient similaires à l'exception des injections ICV de CNQX (antagoniste du récepteur AMPA, 360 nm), UBP-302 (antagoniste du récepteur Kainate, 390 nm), AIDA (antagoniste mGluR1, 2 nmol), LY341495 (antagoniste mGluR2, 150 nmol), et UBP1112 (antagoniste mGluR3, 2 nmol) administré à la place du MK-801. Par la suite, la prise alimentaire cumulative a été enregistrée à 30, 60 et 120 minutes après le processus d'injection. Selon les résultats, l'injection ICV de glutamate a considérablement réduit la prise alimentaire (p<0.05). La co-injection de α-FMH + glutamate et/ou chlorphéniramine + glutamate a réduit l'influence hypophagique du glutamate (p<0.05), tandis que le thiopéramide + glutamate a augmenté l'hypophagie induite par le glutamate chez les poussins nouveau-nés (p<0.05). La co-injection de MK-801 + histamine ou UBP-302 + histamine a réduit l'influence hypophagique de l'histamine (p<0.05), tandis que LY341495 + histamine a augmenté l'influence hypophagique de l'histamine (p<0.05). Compte tenu des résultats, il est suggéré que l'effet de la connexion entre ces systèmes sur le processus de régulation de la prise alimentaire est médié par les histamines H1 et H3 ainsi que par les récepteurs du glutamate NMDA, Kainate et mGluR2 chez les poulets pondeuses néonatales.

Keywords [French]

  • glutamate central
  • Histamine
  • Prise alimentaire
  • poule pondeuse
  1. Yousefvand S, Hamidi F, Zendehdel M, Parham A. Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. Br Poult Sci. 2019;60(1):71-8.
  2. Hassanpour S, Zendehdel M, Babapour V, Charkhkar S. Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. Br Poult Sci. 2015;56(4):443-51.
  3. Parker KE, Johns HW, Floros TG, Will MJ. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration. Behav Brain Res. 2014;260:131-8.
  4. Blandina P, Provensi G, Munari L, Passani MB. Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci. 2012;6(33).
  5. Giannoni P, Passani M-B, Nosi D, Chazot PL, Shenton FC, Medhurst AD, et al. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur J Neurosci. 2009;29(12):2363-74.
  6. Schneider EH, Neumann D, Seifert R. Modulation of behavior by the histaminergic system: Lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev. 2014;47:101-21.
  7. Rafiei M, Taati M, Alavi S, Nayebzadeh H, Zendehdel M. Effects of intracerebroventricular injection of histamine and H1, H2 receptor antagonists on electrocardiographic parameters in broiler chickens. Iranian J Vet Res. 2011;12 (3):192-8.
  8. Rozov SV, Zant JC, Karlstedt K, Porkka-Heiskanen T, Panula P. Periodic properties of the histaminergic system of the mouse brain. Eur J Neurosci 2014;39(2):218-28.
  9. Morimoto T, Yamamoto Y, Yamatodani A. Brain histamine and feeding behavior. Behavioural Brain Research. Behav Brain Res. 2001;124(2):145-50.
  10. Taati M, Babapour V, Kheradmand A, Tarrahi MJ. The role of central endogenous histamine and H1, H2 and H3 receptors on food intake in broiler chickens. Iranian J Vet Res 2009;10(1):54-60.
  11. Irwin N, Hunter K, Frizzell N, Flatt PR. Antidiabetic effects of sub-chronic administration of the cannabinoid receptor (CB1) antagonist, AM251, in obese diabetic (ob/ob) mice. Eur J Pharmacol. 2008;581(1):226-33.
  12. Charles JR, Duva MA, Ramirez GJ, Lara RL, Yang CR, Stanley BG. Activation of lateral hypothalamic mGlu1 and mGlu5 receptors elicits feeding in rats. Neuropharmacology. 2014;79:59-65.
  13. McFadden KL, Cornier M-A, Tregellas JR. The role of alpha-7 nicotinic receptors in food intake behaviors. Front Psychol. 2014;5(553).
  14. Da Silva AA, Marino-Neto J, Paschoalini MA. Feeding induced by microinjections of NMDA and AMPA–kainate receptor antagonists into ventral striatal and ventral pallidal areas of the pigeon. Brain Res. 2003;966(1):76-83.
  15. Taati M, Nayebzadeh H, Zendehdel M. The effects of DL-AP5 and glutamate on ghrelin-induced feeding behavior in 3-h food-deprived broiler cockerels. J Physiol Biochem. 2011;67(2):217-23.
  16. García-Gálvez AM, Arias-Montaño JA. Isoforms of the human histamine H3 receptor: Generation, expression in the central nervous system and functional implications. Gaceta medica de Mexico. Gac Med Mex 2016;152:82-90.
  17. Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637-72.
  18. Garduño-Torres B, Treviño M, Gutiérrez R, Arias-Montaño J-A. Pre-synaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus. Neuropharmacology. 2007;52(2):527-35.
  19. Zendehdel M, Ebrahimi-Yeganeh A, Hassanpour S, Koohi MK. Interaction of the dopaminergic and Nociceptin/Orphanin FQ on central feed intake regulation in chicken. Br Poult Sci. 2019;60(3):317-22.
  20. Zendehdel M, Hassanpour S. Ghrelin-induced hypophagia is mediated by the β2 adrenergic receptor in chicken. J Physiol Sci. 2014;64(5):383-91.
  21. Olanrewaju HA, Purswell J, Collier SD, Branton SL. Effects of light ingress through ventilation fan apertures on selected blood variables of male broilers. Int J Poult Sci 2017;16:288-95.
  22. Blevins JE, Stanley BG, Reidelberger RD. DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Pharmacol Biochem Behav. 2002;71(1):277-82.
  23. Qi W, Ding D, Salvi RJ. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res. 2008;236(1):52-60.
  24. Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav. 1979;22(4):693-5.
  25. Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol. 1997;339(2):211-3.
  26. Saito E-S, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, et al. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept. 2005;125(1):201-8.
  27. Furuse M, Ando R, Bungo T, Shimojo M, Masuda Y. Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci. 1999;40(5):698-700.
  28. Baghbanzadeh A, Babapour V. Glutamate ionotropic and metabotropic receptors affect feed intake in broiler cockerels. J Vet Res. 2007;62(4):125-9.
  29. Zendehdel M, Baghbanzadeh A, Babapour V, Cheraghi J. The effects of bicuculline and muscimol on glutamate-induced feeding behavior in broiler cockerels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009;195(8):715-20.
  30. Zendehdel M, Hamidi F, Hassanpour S. The Effect of Histaminergic System on Nociceptin/Orphanin FQ Induced Food Intake in Chicken. Int J Pept Res Ther. 2015;21(2):179-86.
  31. Meade S, Denbow DM. Feeding, drinking, and temperature responses of chickens to intracerebroventricular histamine. Physiol Behav. 2001;73(1):65-73.
  32. Passani MB, Blandina P, Torrealba F. The histamine H3 receptor and eating behavior. J Pharmacol Exp Ther 2011;336(1):24-9.
  33. Hancock AA, Brune ME. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin Investig Drugs. 2005;14(3):223-41.
  34. Duva MA, Siu A, Stanley BG. The NMDA receptor antagonist MK-801 alters lipoprivic eating elicited by 2-mercaptoacetate. Physiol Behav. 2005;83(5):787-91.
  35. Ciranna L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol. 2006;4(2):101-14.
  36. Faucard R, Armand V, Héron A, Cochois V, Schwartz J-C, Arrang J-M. N-methyl-d-aspartate receptor antagonists enhance histamine neuron activity in rodent brain. J Neurochem. 2006;98(5):1487-96.
  37. Fell MJ, Katner JS, Johnson BG, Khilevich A, Schkeryantz JM, Perry KW, et al. Activation of metabotropic glutamate (mGlu)2 receptors suppresses histamine release in limbic brain regions following acute ketamine challenge. Neuropharmacology. 2010;58(3):632-9.
  38. Okakura-Mochizuki K, Mochizuki T, Yamamoto Y, Horii A, Yamatodani A. Endogenous GABA Modulates Histamine Release from the Anterior Hypothalamus of the Rat. J Neurochem. 1996;67(1):171-6.
  39. Haas HL, Sergeeva OA, Selbach O. Histamine in the Nervous System. Physiol Rev. 2008;88(3):1183-241.
  40. Fell MJ, Flik G, Dijkman U, Folgering JHA, Perry KW, Johnson BJ, et al. Glutamatergic regulation of brain histamine neurons: In vivo microdialysis and electrophysiology studies in the rat. Neuropharmacology.
    2015;99:1-8.
  41. Yu X, Ye Z, Houston Catriona M, Zecharia Anna Y, Ma Y, Zhang Z, et al. Wakefulness Is Governed by GABA and Histamine Cotransmission. Neuron. 2015;87(1):164-78.
  42. Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP. Differential Modulation of Excitatory and Inhibitory Striatal Synaptic Transmission by Histamine. J Neurosci. 2011;31(43):15340-51.
  1. Prast H, Tran MH, Fischer H, Kraus M, Lamberti C, Grass K, et al. Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H3 histamine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1999;360(5):558-64.
  2. Osorio-Espinoza A, Alatorre A, Ramos-Jiménez J, Garduño-Torres B, García-Ramírez M, Querejeta E, et al. Pre-synaptic histamine H3 receptors modulate glutamatergic transmission in rat globus pallidus. Neuroscience. 2011;176:20-31.