Hemodynamic Changes Provoked through Intravascular Injection of the Echis carinatus Venom in Rats

Document Type : Original Articles


1 Department of Pharmacology, Bushehr University of Medical Sciences, Bushehr, Iran

2 Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Iran

3 Department of Aquatic Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University Tehran, Iran

4 Department of Pathology, Bushehr University of Medical Sciences, Bushehr, Iran

5 College of Veterinary Medicine, Gyeongsang National University, Jinju, KR

6 Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

7 School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran


Echis carinatus (E. carinatus) is known for its hematological and nephrotoxic properties in the envenomed patients. Based on the limited data upon the cardiovascular changes associated with this dangerous venomous snake in Iran, the current study purposed to evaluate the venom-induced hemodynamic manifestations in rats. Venom (120 µg/kg) was administered intravenously within one minute through the left femoral vein, and the hemodynamic parameters were continuously recorded using a pressure transducer (MLT844, ADInstruments, Australia). The venom caused prominent hypotension leading to death a few minutes after a transient uprise in blood pressure. It also induced a decrease in heart and pulmonary rates, yet it had no arrhythmogenic properties. Additionally, pre-treatment with the pepsin-derived Iranian polyvalent antivenom (30 µl/Kg) completely neutralized the hemodynamic responses but had no effect when instilled two minutes after venom injection. Heparin (300 IU/kg) and epinephrine (1.5 µg/kg) prevented dramatic hypotension when used 10 minutes before venom instillation; however, atropine (1 mg/kg), dexamethasone (1 mg/kg), and ketorolac (10 mg/ml) had no effects. All treated rats were killed post-injection. Histologically, the lung was the most vulnerable organ with mononuclear infiltration, microcystic formation, and significant capillary congestion. Prominent renal pathological deterioration also occurred, including mesangial cell infiltration and diffuse bleeding, leading to acute tubular necrosis. Modest portal inflammation and vascular congestion were observed in the hepatic tissue of the envenomed rats. The crude venom of Iranian Echis carinatus caused hypotension leading to bradycardia, a decrease in pulmonary rate, and death without significant histological changes to the heart.


Main Subjects

Article Title [French]

Modifications Hémodynamiques Provoquées par l'Injection Intravasculaire de Venin d'Echis carinatus Chez les Rats

Abstract [French]

Echis carinatus (E. carinatus) est connu pour ses propriétés hématologiques et néphrotoxiques chez les patients envenimés. Sur la base des données limitées concernant les changements cardiovasculaires associés à ce dangereux serpent venimeux en Iran, la présente étude visait à évaluer les manifestations hémodynamiques induites par le venin chez les rats. Du venin (120 µg/kg) a été administré par voie intraveineuse en une minute dans la veine fémorale gauche, et les paramètres hémodynamiques ont été enregistrés en continu à l'aide d'un transducteur de pression (MLT844, ADInstruments, Australie). Le venin a provoqué une hypotension importante entraînant la mort quelques minutes après une augmentation transitoire de la pression artérielle. Il a également induit une diminution des fréquences cardiaques et pulmonaires, mais il n'avait pas de propriétés arythmogènes. De plus, le prétraitement avec l'antivenin polyvalent iranien dérivé de la pepsine (30 µl/kg) a complètement neutralisé les réponses hémodynamiques mais n'a eu aucun effet lorsqu'il a été instillé deux minutes après l'injection de venin. L'héparine (300 IU/kg) et l'épinéphrine (1.5 µg/kg) ont empêché une hypotension dramatique lorsqu'elles ont été utilisées 10 minutes avant l'instillation de venin; cependant, l'atropine (1 mg/kg), la dexaméthasone (1 mg/kg) et le kétorolac (10 mg/ml) n'ont eu aucun effet. Tous les rats traités ont été tués après l'injection. Histologiquement, le poumon était l'organe le plus vulnérable avec une infiltration mononucléaire, une formation microkystique et une congestion capillaire importante. Une détérioration pathologique rénale importante s'est également produite, y compris une infiltration de cellules mésangiales et un saignement diffus, conduisant à une nécrose tubulaire aiguë. Une inflammation portale modeste et une congestion vasculaire ont été observées dans le tissu hépatique des rats envenimés. Le venin brut d'Echis carinatus iranien a provoqué une hypotension entraînant une bradycardie, une diminution de la fréquence pulmonaire et la mort sans modifications histologiques significatives du cœur.

Keywords [French]

  • Echis carinatus
  • Venin
  • serpent
  • hémodynamique
  • Antivenin
  1. Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake Envenoming: A Disease of Poverty. PLOS Negl Trop Dis. 2009;3(12):e569.
  2. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008;5(11):e218.
  3. White J. Bites and Stings From Venomous Animals: A Global Overview. NLM. 2000;22(1):65-8.
  4. Fathi B, Jamshidi A, Zolfagharian H, Zare mirakabbadi A. Investigation of the antibacterial effect of venom of the Iranian snake Echis carinatus. Iran. J Vet Sci Technol. 2011;2:93-9.
  5. Kornalik F, Blombäck B. Prothrombin activation induced by ecarin - A prothrombin converting enzyme from echis carinatus venom. Thromb Res. 1975;6(1):53-63.
  6. Sitprija V. Animal toxins and the kidney. Nat Clin Pract Nephrol. 2008;4(11):616-27.
  7. Dehghani R, Fathi B, Shahi MP, Jazayeri M. Ten years of snakebites in Iran. Toxicon. 2014;90:291-8.
  8. Chaisakul J, Isbister GK, Tare M, Parkington HC, Hodgson WC. Hypotensive and vascular relaxant effects of phospholipase A2 toxins from Papuan taipan (Oxyuranus scutellatus) venom. Eur J Pharmacol. 2014;723:227-33.
  9. Ziaee M, Khorrami A, Ebrahimi M, Nourafcan H, Amiraslanzadeh M, Rameshrad M, et al. Cardioprotective effects of essential oil of Lavandula angustifolia on isoproterenol-induced acute myocardial infarction in rat. Iran J Pharm Res. 2015;14(1):279.
  10. Chaisakul J, Isbister GK, Kuruppu S, Konstantakopoulos N, Hodgson WC. An examination of cardiovascular collapse induced by eastern brown snake (Pseudonaja textilis) venom. Toxicology Letters. 2013;221(3):205-11.
  11. Costa SKP, Moreno H, Brain SD, De Nucci G, Antunes E. The effect of Phoneutria nigriventer (armed spider) venom on arterial blood pressure of anaesthetised rats. Eur J Pharmacol. 1996;298(2):113-20.
  12. Dias L, Rodrigues MA, Renno AL, Stroka A, Inoue BR, Panunto PC, et al. Hemodynamic responses to Lachesis muta (South American bushmaster) snake venom in anesthetized rats. Toxicon. 2016;123:1-14.
  13. Rochette L, Yao-Kouame J, Bralet J, Opie LH. Effects Of Promethazine on Ischemic and Reperfusion Arrhythmias in Rat Heart. NLM. 1988;2(5):385-97.
  14. Smits JFM, van Essen H, Tijssen CM, Struyker-Boudier HAJ. Effects of Ketanserin on Hemodynamics and Baroreflex Effects in Conscious Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol. 1987;10(1):1-8.
  15. Patra A, Kalita B, Chanda A, Mukherjee AK. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci Rep. 2017;7(1):17119.
  16. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers. 2017;3(1):17063.
  17. Noguchi K, Sakanashi M, Matsuzaki T, Nakasone J, Sakanashi M, Koyama T, et al. Cardiovascular effects and lethality of venom from nematocysts of the box-jellyfish Chiropsalmus quadrigatus (Habu-kurage) in anaesthetized rats. Toxicon. 2005;45(4):519-26.
  18. Szold O, Ben-Abraham R, Weinbroum AA, Englender TE, Ovadia D, Sorkine M, et al. Antagonization of TNF attenuates systemic hemodynamic manifestations of envenomation in a rat model of Vipera aspis snakebite. Intensive Care Med. 2001;27(5):884-8.
  19. Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29(11):1279-303.
  20. Fatehi-Hassanabad Z, Fatehi M, Talaei-Khoei M. Effects of Echis carinatus Venom on the Haemodynamy and Contractility of Vascular and Visceral Smooth Muscle of Rats. Toxicol Mech Methods. 2004;15(1):53-7.
  21. Radha krishna murthy K, Zare abbas M, Haghnazari L. Investigations on the role of insulin and scorpion antivenom in scorpion envenoming syndrome. J Venom Anim Toxins. 2003;9:202-38.
  22. Omran MAA, Abdel-Nabi IM. Changes in the arterial blood pressure, heart rate and normal ECG parameters of rat after envenomation with Egyptian cobra (Naja haje) venom. HET. 1997;16(6):327-33.
  23. Inase N, Schreck RE, Lazarus SC. Heparin inhibits histamine release from canine mast cells. NLM. 1993;264(4):L387-L90.
  24. Church JE, Hodgson WC. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom. Toxicon. 2002;40(6):787-96.
  25. Tarasiuk A, Khvatskin S, Sofer S. Effects of antivenom serotherapy on hemodynamic pathophysiology in dogs injected with L. quinquestriatus scorpion venom. Toxicon. 1998;36(7):963-71.
  1. Tarasiuk A, Menascu S, Sofer S. Antivenom serotherapy and volume resuscitation partially improve peripheral organ ischemia in dogs injected with scorpion venom. Toxicon. 2003;42(1):73-7.
  2. Mazzei de Dàvila CA, Dàvila DF, Donis JH, de Bellabarba GA, Villarreal V, Barboza JS. Sympathetic nervous system activation, antivenin administration and cardiovascular manifestations of scorpion envenomation. Toxicon. 2002;40(9):1339-46.
  3. Cher CDN, Armugam A, Zhu YZ, Jeyaseelan K. Molecular basis of cardiotoxicity upon cobra envenomation. Cell Mol Life Sci CMLS. 2005;62(1):105-18.
  4. Al-Sadoon MK, Fahim A. Possible recovery from an acute envenomation in male rats with LD50 of Echis coloratus crude venom: I-A seven days hematological follow-up study. Saudi J Biol Sci. 2012;19(2):221-7.
  5. Yücel Ağan AF, Hayretdağ S. The effects of Macrovipera lebetina venom on mice. Toxin Rev. 2019;38(2):87-92.
  6. Perumal Samy R, Gopalakrishnakone P, Bow H, Puspharaj PN, Chow VTK. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie. 2010;92(12):1854-66.
  7. Warrell DA, Pope HM, Prentice CRM. Disseminated Intravascular Coagulation Caused by the Carpet Viper (Echis carinatus): Trial of Heparin. NLM. 1976;33(3):335-42.
  8. Al-Johany AM, Al-Sadoon MK, Abdel Moneim AE, Bauomy AA, Diab MSM. Histological, molecular and biochemical detection of renal injury after Echis pyramidum snake envenomation in rats. Saudi J Biol Sci. 2015;22(3):302-11.