Molecular Detection of Spotted Fever Group Rickettsia (Rickettsiales: Rickettsiaceae) in Ticks of Iran

Document Type : Original Articles


1 Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

2 Agricultural Research, Education and Extension Organization (AREEO), Lorestan Agricultural and Natural Resources Research Center, Khorramabad, Iran

3 Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

4 Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran

5 Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran


Ticks are reservoir hosts of pathogenic Rickettsia in humans and domestic animals. Most pathogenic Rickettsia species belong to the spotted fever group (SFG). The present study aimed to determine the tick species infected with Rickettsia based on the genus-specific 23S ribosomal ribonucleic acid (rRNA), 16S rRNA, and citrate synthase (gltA) gene fragments. A total of 61 tick specimens were selected for molecular assay and 12 samples for sequencing. Phylogenetic analysis was conducted using neighbor-joining and Bayesian inference methods. Argas persicus, Haemaphysalis sulcata, Ha. inermis, and Hyalomma asiaticum were infected by spotted fever Rickettsia. The SFG is the main group of Rickettsia that can be detected in the three genera of ticks from Iran.


Article Title [French]

Détection Moléculaire du Groupe des Fièvres Boutonneuses Rickettsia (Rickettsiales: Rickettsiaceae) chez les Tiques d'Iran

Abstract [French]

Les tiques sont des hôtes réservoirs de Rickettsies pathogènes chez les humains et les animaux domestiques. La plupart des espèces de Rickettsia pathogènes appartiennent au groupe des fièvres boutonneuses (GFB). La présente étude visait à déterminer les espèces de tiques infectées par Rickettsia en se basant sur les fragments du genre spécifique de l'acide ribonucléique ribosomique 23S (ARNr), de l'ARNr 16S et du citrate synthase (gltA). Un total de 61 tiques a été sélectionné pour l'analyse moléculaire et 12 échantillons pour le séquençage. L'analyse phylogénétique a été menée en utilisant des méthodes de neighbor-joining et d'inférence Bayésienne. Argas persicus, Haemaphysalis sulcata, Ha. inermis et Hyalomma asiaticum sont avérés être infectés par la fièvre boutonneuse Rickettsia. Les Rickettsia sont les principaux GFB détectés dans les trois genres de tiques d'Iran.

Keywords [French]

  • Rickettsia
  • tiques
  • Groupes des fièvres boutonneuses
  • Arbre phylogénétique
  • Iran
Benson, M.J., Gawronski, J.D., Eveleigh, D.E., Benson, D.R., 2004. Intracellular symbionts and other bacteria associated with deer ticks (Ixodes scapularis) from Nantucket and Wellfleet, Cape Cod, Massachusetts. Appl Environ Microbiol 70, 616–620.
Braig, H.R., Turner, B.D., Perotti, M.A., 2009. Symbiotic Rickettsia. In: Bourtzis, K., Miller, T.A. (Eds.), Insect symbiosis, CRC Press, London UK, pp. 221–249.
Clay, K., Fuqua, C., 2010. The tick microbiome: diversity, distribution and influence of the internal microbial community for a blood-feeding disease vector. Critical needs and gaps in understanding prevention, amelioration, and resolution of Lyme and other tick-borne diseases: the short-term and long-term outcomes. Workshop report. Institute of Medicine Committee on Lyme Disease and Other Tick-Borne Diseases, Washington, DC USA, pp. 1–22.
Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29, 1969–1973.
Duh, D., Punda-Polic, V., Avsic-Zupanc, T., Bouyer, D., Walker, D.H., Popov, V.L., et al., 2010. Rickettsia hoogstraalii sp. nov., isolated from hard-and soft-bodied ticks. Int J Syst Evol Microbiol 60, 977–984.
Duh, D., Punda‐Polić, V., Trilar, T., Petrovec, M., Bradarić, N., Avšič‐Županc, T., 2006. Molecular identification of Rickettsia felis‐like bacteria in Haemaphysalis sulcata ticks collected from domestic animals in southern Croatia. Ann N Y Acad Sci 1078, 347–351.
Estrada-Peña, A., Bouattour, A., Camicas, J.L., Walker, A.R., 2004. Ticks of domestic animals in the Mediterranean region: a guide to identification of species, University of Zaragoza, Zaragoza Spain.
Estrada-Peña, A., Jongejan, F., 1999. Ticks feeding on humans: a review of records on human-biting ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23, 685–715.
Fournier, P.E., Raoult, D., 2007. Bacteriology, taxonomy, and phylogeny of Rickettsia. In: Raoult, D., Parola, P. (Eds.), Rickettsial diseases, Informa, London UK, pp. 1–13.
Fournier, P.E., Roux, V., Raoult, D., 1998. Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Evol Microbiol 48, 839–849.
Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221-224.
Heise, S.R., Elshahed, M.S., Little, S.E., 2010. Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J Med Entomol 47, 258–268.
Hornok, S., Meli, M.L., Perreten, A., Farkas, R., Willi, B., Beugnet, F., et al., 2010. Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as potential vectors of rickettsial and mycoplasmal agents. Vet Microbiol 140, 98–104.
Hosseini-Chegeni, A., Hosseine, R., Tavakoli, M., Telmadarraiy, Z., Abdigoudarzi, M., 2013. The Iranian Hyalomma (Acari: Ixodidae) with a key to the identification of male species. Persian J Acarol 2, 503–529.
Hosseini-Chegeni, A., Hosseini, R., Abdigoudarzi, M., Telmadarraiy, Z., Tavakoli, M., 2015. An additional records of Hyalomma marginatum rufipes Koch, 1844 (Acari: Ixodidae) in southwestern and southern Iran with a molecular evidence. Iran J Anim Biosyst 11, 79–89.
Hosseini-Chegeni, A., Tavakoli, M., 2013. Argas vespertilionis (Ixodida: Argasidae): A parasite of Pipistrel bat in Western Iran. Persian J Acarol 2, 321–330.
Hosseini-Chegeni, A., Telmadarraiy, Z., Salimi, M., Arzamani, K., Banafshi, O., 2014. A record of Haemaphysalis erinacei (Acari: Ixodidae) collected from Hedgehog and an identification key for the species of Haemaphysalis occurring in Iran. Persian J Acarol 3, 203–215.
Kamali, K., Ostovan, H., Atamehr, A., 2001. A catalog of mites and ticks (Acari) of Iran, Islamic Azad University Scientific Publication Center, Tehran Iran.
Kordová, N., Rehacek, J., 1964. Microscopic examination of the organs of ticks infected with Rickettsia prowazeki. Acta Virol 8, 465–469.
Lee, J.H., Park, H.S., Jang, W.J., Koh, S.E., Kim, J.M., Shim, S.K., et al., 2003. Differentiation of rickettsiae by groEL gene analysis. J Clin Microbiol 41, 2952–2960.
Li, H., Cui, X.M., Cui, N., Yang, Z.D., Hu, J.G., Fan, Y.D., et al., 2016. Human infection with novel spotted fever group Rickettsia genotype, China, 2015. Emerg Infect Dis 22, 2153–2156.
Loeffelholz, M., Deng, H., 2006. PCR and its variations In: Tang, Y.W., Stratton, C.W. (Eds.), Advanced techniques in diagnostic microbiology, Springer, New York USA, pp. 166–184.
Moreno, C.X., Moy, F., Daniels, T.J., Godfrey, H.P., Cabello, F.C., 2006. Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environ Microbiol 8, 761–772.
Noh, Y., Lee, Y.S., Kim, H.C., Chong, S.T., Klein, T.A., Jiang, J., et al., 2017. Molecular detection of Rickettsia species in ticks collected from the southwestern provinces of the Republic of Korea. Parasit Vectors 10, 20–29.
Nolte, F.S., Wittwer, C.T., 2016. Nucleic acid amplification methods overview. In: Persing, D.H., Tenover, F.C. (Eds.), Molecular microbiology: diagnostic principles and practice, ASM Press, Washington DC USA, pp. 3–18.
Owen, H., Unsworth, N., Stenos, J., Robertson, I., Clark, P., Fenwick, S., 2006. Detection and identification of a novel spotted fever group rickettsia in Western Australia. Ann NY Acad Sci 1078, 197–199.
Pader, V., Buniak, J.N., Abdissa, A., Adamu, H., Tolosa, T., Gashaw, A., et al., 2012. Candidatus Rickettsia hoogstraalii in Ethiopian Argas persicus ticks. Ticks Tick Borne Dis. 3, 338–345.
Parola, P., Paddock, C.D., Raoult, D., 2005. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18, 719-756.
Perlman, S.J., Hunter, M.S., Zchori-Fein, E., 2006. The emerging diversity of Rickettsia. Proc R Soc Lond B Biol Sci 273, 2097–2106.
Pomerantzev, B.I., ‎1950‎. Fauna of USSR arachnida: Ixodid ticks (Ixodidae), Fauna SSSR, Akademii Nauk SSSR, Leningrad USSR.
Portillo, A., Santibáñez, P., Santibáñez, S., Pérez-Martínez, L., Oteo, J.A., 2008. Detection of Rickettsia spp. in Haemaphysalis ticks collected in La Rioja, Spain. Vector-Borne Zoonotic Dis 8, 653–658.
Raoult, D., Parola, P., 2007. Preface. In: Raoult, D., Parola, P. (Eds.), Rickettsial diseases, Informa, London UK.
Raoult, D., Roux, V., 1997. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10, 694–719.
Rehacek, J., Urvölgyi, J., Kovacova, E., 1977. Massive occurrence of rickettsiae of the spotted fever group in fowl tampan, Argas persicus, in the Armenian SSR. Acta Virol 21, 431–438.
Roux, V., Rydkina, E., Eremeeva, M., Raoult, D., 1997. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Evol Microbiol 47, 252–261.
Sambrook, J., Russell, D.W., 2001. Molecular cloning, a laboratory manual, Cold Spring Harbor Laboratory Press, New York USA.
Sarih, M., Socolovschi, C., Boudebouch, N., Hassar, M., Raoult, D., Parola, P., 2008. Spotted fever group Rickettsiae in ticks, Morocco. Emerg Infect Dis 14, 1067–1073.
Suitor Jr, E.C., Weiss, E., 1961. Isolation of a rickettsialike microorganism (Wolbachia persica, n. sp.) from Argas persicus (Oken). J Infect Dis 108, 95–106.
Sumrandee, C., Baimai, V., Trinachartvanit, W., Ahantarig, A., 2016. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand. Ticks Tick Borne Dis 7, 678–689.
Sumrandee, C., Hirunkanokpun, S., Doornbos, K., Kitthawee, S., Baimai, V., Grubhoffer, L., et al., 2014. Molecular detection of Rickettsia species in Amblyomma ticks collected from snakes in Thailand. Ticks Tick Borne Dis 5, 632–640.
Telford, S.R., Parola, P., 2007. Arthropods and rickettsiae. In: Raoult, D., Parola, P. (Eds.), Rickettsial diseases, Informa, London UK, pp. 27–36.
Telmadarraiy, Z., Bahrami, A., Vatandoost, H., 2004. A survey on fauna of ticks in west Azerbaijan province, Iran. Iran. J Public Health 33, 65–69.
Telmadarraiy, Z., Chinikar, S., Vatandoost, H., Faghihi, F., Hosseini-Chegeni, A., 2015. Vectors of Crimean Congo Hemorrhagic Fever (CCHF) virus in Iran. J Arthropod-Borne Dis 9, 137–147.
Tomassone, L., Ceballos, L.A., Ragagli, C., Martello, E., De Sousa, R., Stella, M.C., et al., 2017. Importance of common wall lizards in the transmission dynamics of tick-borne pathogens in the northern apennine mountains, Italy. Microb Ecol 74, 961-968.
Yu, X., Jin, Y., Fan, M., Xu, G., Liu, Q., Raoult, D., 1993. Genotypic and antigenic identification of two new strains of spotted fever group rickettsiae isolated from China. J. Clin. Microbiol. 31, 83–88.
Zhuang, L., Wang, C.Y., Tong, Y.G., Tang, F., Yang, H., Liu, W., et al., 2014. Discovery of Rickettsia species in Dermacentor niveus Neumann ticks by investigating the diversity of bacterial communities. Ticks Tick Borne Dis 5, 564–568.