Use of Enzymes in Dairy Industry: A Review of Current Progress

Document Type: Scientific Report

Authors

1 National Institute of Food Science and Technology, Faculty of Food, Nutrition, and Home Sciences, University of Agriculture, Faisalabad, Pakistan

2 Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University Campus, 51240, Nigde, Turkey

Abstract

This review paper aimed to provides precious information about the function and use of different enzymes in dairy food applications. An enzyme is called a protein and catalyzes a specific reaction. Every enzyme is intended to initiate a particular reaction with a specific outcome. Moreover, numerous enzymes are present in the human body. Dairy food applications include the use of different enzymes, such as protease, to lessen the allergic properties of bovine milk products and lipase to improve the flavor of the cheese. Caseins, which are acid-soluble, are free from a flavor and can be suitable for addition to beverages and acidy foods by the limitation of proteolysis. The hydrolysates of casein are better to use in foods based on milk proteins for newborn children with allergy to bovine milk. Lipolysis makes a significant role in the flavor of Swiss cheese. The peppery flavor of Blue cheese is produced by short-chain unsaturated fats and methyl ketones. Many minor enzymes with limited application in dairy processes are sulphydryl oxidase, lactoperoxidase, glucose oxidase, catalase, lysozyme, and superoxide dismutase. Both catalase and glucose oxidase are utilized in food preservation processes. The scope minor enzymes in milk products needed for better production of dairy products and for the future of dairy technology. The worldwide market for the production of microbial enzymes used in dairy products processing is impressively increasing; however, there are a limited number of enzyme-producing industries in the market. The production of proteinase, lactase, lipase, and microbial rennet is increasing in the laboratory and small scales. In near future, the need for these enzymes will be undoubtedly significantly increasing essentially due to the requirement of significant nutritional valuable dairy products in the country to overcome malnutrition and obesity and shift toward low-fat and healthy foods.

Keywords


Article Title [French]

Les Progrès Actuels dans l’Utilisation des Enzymes en Industrie Laitière

Abstract [French]

Cette étude visait à fournir des informations pertinentes sur la fonction et l'utilisation de différentes enzymes dans les produits laitiers. Les enzymes sont une classe spécialisée de protéines responsables de la catalyse des réactions chimiques. Chaque enzyme a pour vocation d'initier une réaction particulière menant à un résultat spécifique. De plus, de nombreuses enzymes sont présentes dans le corps humain. Les producteurs laitiers utilisent différentes enzymes, telles que la protéase pour réduire les propriétés allergiques des produits laitiers bovins et la lipase pour améliorer la saveur du fromage. Les caséines, qui sont solubles dans les acides, sont exemptes de saveur et peuvent intégrer la composition des boissons et aliments acides afin de limiter la protéolyse. Il est préférable d'utiliser les hydrolysats de caséine dans les aliments à base de protéines de lait pour les nouveau-nés allergiques au lait de vache. La lipolyse joue un rôle important dans la saveur du fromage suisse. La saveur poivrée du fromage bleu est produite par des graisses insaturées à chaîne courte et des méthylcétones. De nombreuses enzymes mineures ayant une application limitée dans les procédés laitiers sont la sulfhydryl oxydase, la lactoperoxydase, la glucose oxydase, la catalase, le lysozyme et la superoxyde dismutase. La catalase et la glucose oxydase sont utilisées dans les processus de conservation des aliments. Les enzymes mineures dans les produits laitiers sont nécessaires pour une meilleure production des produits laitiers et pour l'avenir de la technologie laitière. Le marché mondial connaît une croissance impressionnante dans la production d'enzymes microbiennes utilisées dans la transformation des produits laitiers; cependant, il existe un nombre limité d'industries productrices d'enzymes sur le marché, même si la production de protéinase, de lactase, de lipase et de présure microbienne a augmenté en laboratoire et à petite échelle. Dans un avenir proche, la demande pour ces enzymes augmentera considérablement. Cela est dû à la demande grandissante en produits laitiers à forte valeur nutritive en Iran pour vaincre la malnutrition et l'obésité et passer à des aliments à faibles teneurs en gras et plus sains.

Keywords [French]

  • Enzymes
  • Industrie laitière
  • produits laitiers
  • Technologie laitière
Alkan, H., Baysal, Z., Uyar, F., Dogru, M., 2007. Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol 136, 183-192.

Andersen, M.R., Nielsen, M.L., Nielsen, J., 2008. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 4, 178.

Bönisch, M.P., Huss, M., Weitl, K., Kulozik, U., 2007. Transglutaminase cross-linking of milk proteins and impact on yoghurt gel properties. Int Dairy J 17, 1360-1371.

Couto, S.R., Sanromán, M.A., 2006. Application of solid-state fermentation to food industry—a review. J Food Eng 76, 291-302.

Dajanta, K., Chukeatirote, E., Apichartsrangkoon, A., 2008. Effect of lactoperoxidase system on keeping quality of raw cow's milk in Thailand. Int J Dairy Sci 3, 112-116.

Deeth, H.C., 2006. Lipoprotein lipase and lipolysis in milk. Int Dairy J 16, 555-562.

Duruyurek, M., Dusgun, C., Gulhan, M.F., Selamoğlu, Z., 2015. Production of bioethanol from waste potato. Turkish J Agric Food Sci Technol 3, 331-334.

Erdemli, M.E., Akgul, H., Ege, B., Aksungur, Z., Bag, H.G., Selamoglu, Z., 2017. The effects of grapeseed extract and low level laser therapy administration on the liver in experimentally fractured mandible. J Turgut Ozal Med Center 24, 127-133.

Farkye, N.Y., 2004. Cheese technology. Int J Dairy Technol 57, 91-98.

Farnsworth, J., Li, J., Hendricks, G., Guo, M., 2006. Effects of transglutaminase treatment on functional properties and probiotic culture survivability of goat milk yogurt. Small Ruminant Res 65, 113-121.

Fox, P.F., 2002. Significance of Indigenous Enzymes in Milk and Dairy Products. Handbook of food enzymology, Florida: CRC Press, pp. 270-293.

Gauche, C., Tomazi, T., Barreto, P., Ogliari, P., Bordignon-Luiz, M., 2009. Physical properties of yoghurt manufactured with milk whey and transglutaminase. LWT Food Sci Technol 42, 239-243.

Hasan, F., Shah, A.A., Hameed, A., 2006. Industrial applications of microbial lipases. Enzyme Microb Technol 39, 235-251.

Low, Y.H., Agboola, S., Zhao, J., Lim, M.Y., 2006. Clotting and proteolytic properties of plant coagulants in regular and ultrafiltered bovine skim milk. Int Dairy J 16, 335-343.

Manay, N., Shakuntala, O., 2001. Food: facts and principles, India: New Age International, pp. 116-130.

Merheb-Dini, C., Gomes, E., Boscolo, M., da Silva, R., 2010. Production and characterization of a milk-clotting protease in the crude enzymatic extract from the newly isolated Thermomucor indicae-seudaticae N31: (Milk-clotting protease from the newly isolated Thermomucor indicae-seudaticae N31). Food Chem 120, 87-93.

Ozer, B., Kirmaci, H.A., Oztekin, S., Hayaloglu, A., Atamer, M., 2007. Incorporation of microbial transglutaminase into non-fat yogurt production. Int Dairy J 17, 199-207.

Salmas, R.E., Gulhan, M.F., Durdagi, S., Sahna, E., Abdullah, H.I., Selamoglu, Z., 2017. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem Funct 35, 304-314.

Şanlı, T., Sezgin, E., Deveci, O., Şenel, E., Benli, M., 2011. Effect of using transglutaminase on physical, chemical and sensory properties of set-type yoghurt. Food Hydrocolloids 25, 1477-1481.

Sevindik, M., Akgul, H., Bal, C., Selamoglu, Z., 2018. Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian J PharmEduc Res 52, 437-441.

Silva, C.R.d., Delatorre, A.B., Martins, M.L.L., 2007. Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp and some properties of the enzymatic activity. Braz J Microbiol 38, 253-258.

Tamang, J.P., Fleet, G.H., 2009. Yeasts diversity in fermented foods and beverages. Yeast biotechnology: diversity and applications, New York: Springer, pp. 169-198.

Tanasupawat, S., Komagata, K., 2001. Lactic acid bacteria in fermented foods in Southeast Asia. Microbial Diversity in Asia: Technology and Prospects, Singapore: World Scientific, pp. 43-59.

Wilkinson, A.P., Gee, J.M., Dupont, M.S., Needs, P.W., Mellon, F.A., Williamson, G., et al., 2003. Hydrolysis by lactase phlorizin hydrolase is the first step in the uptake of daidzein glucosides by rat small intestine in vitro. Xenobiotica 33, 255-264.

Wood, B.J., 2012. Microbiology of fermented foods, Berlin: Springer Science & Business Media, pp. 170-189.