Aflatoxin M1-Binding Ability of Selected Lactic Acid Bacteria Strains and Saccharomyces boulardii in the Experimentally Contaminated Milk Treated with Some Biophysical Factors

Document Type: Original Articles


1 Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran


There is a growing concern regarding the recurrent observation of aflatoxins (AFs) in the milk of lactating animals. Regarding this, the present study was conducted to assess the aflatoxin M1 (AFM1)-binding ability of three species, namely Lactobacillus rhamnosus, L. plantarum, and Saccharomyces boulardii, inAFM1-contaminatedmilk. The mentioned species were administeredatthe concentrations of107 and 109 CFU/mLto skimmed milk contaminated with 0.5 and 0.75 ng/mL AFM1 within the incubation times of 30 and 90 min at 4°C and 37°C. Lactobacillus rhamnosus was found to have the best binding ability at the concentrations of 107 and 109 (CFU/ml), rendering 82% and 90% removal in the milk samples with 0.5 and 0.75 ng/ml AFM1, respectively. Accordingly, this value at 107 and 109 CFU/ml of L. plantarum was obtained 89% and 82% with 0.75 ng/ml of AFM1, respectively. For S. boulardii at 107 and 109 CFU/ml, the rates were respectively estimated at 75% and 90% with 0.75 ng/ml of AFM1. The best AFM1-binding levels for L. rhamnosus, L. plantarum, and S. boulardii were 91.82±10.9%, 89.33±0.58%, and 93.20±10.9, respectively, at the concentrations of 1×109, 1×107, and 1×107 CFU/ml at 37, 4, and 37°C, respectively. In this study, the maximum AFM1 binding (100.0±0.58) occurred while a combination of the aforementioned probiotics was employed at a concentration of 1×107 CFU/ml at 37°C with 0.5 ng/ml AFM1, followed by the combination of L. rhamnosus and L. plantarum (95.86±10.9) at a concentration of 1×109 CFU/ml at the same temperature with 0.75 ng/ml AFM1. It was concluded that the use of S. boulardii in combination with Lactobacillus rhamnosus and L. plantarum, which bind AFM1 in milk, can decrease the risk of AFM1 in dairy products.


Article Title [French]

Capacité de Liaison À l'aflatoxine M1 présente dans le Lait Contaminé de Certaines Souches de Bactéries Lactiques Sélectionnées et de Saccharomyces Boulardii Expérimentalement Traité avec Certains Facteurs Biophysiques

Abstract [French]

Il existe une préoccupation croissante concernant l'observation récurrente des aflatoxines (AF) dans le lait des animaux en lactation. L’obejectif de cette étude était d’évaluer la capacité de liaison de l'aflatoxine M1 (AFM1) de trois espèces, à savoir Lactobacillus rhamnosus, L. plantarum et Saccharomyces boulardii, dans le lait contaminé par FM1. Les espèces ont été administrées à des concentrations de 107 et 109 UFC/ mL dans du lait écrémé contaminé par 0.5 et 0.75 ng/mL d'AFM1 dans des temps d'incubation de 30 et 90 min à 4° C et 37° C. Lactobacillus rhamnosus s'est avéré avoir la meilleure capacité de liaison aux concentrations de 107 et 109 (UFC/ml). Cette bactérie lactique arespectivement éliminé 82% et 90% de l’AFM1 présente dans les échantillons de lait contenant 0.5 et 0.75 ng/ml d’aflatoxines. L. plantarum ajouté au lait à concentration de 107 et 109 UFC/ml s’est également avérée efficace et a diminué le contenu en AFM1 (0.75 ng/ml) de 89% et 82%, respectivement. Pour S. boulardii à 107 et 109 UFC/ml, les taux ont été respectivement estimés à 75% et 90% avec 0.75 ng/ml dAFM1. Les meilleurs niveaux de liaison à l'AFM1 ont été obtenus pour 1×109 UFC/ml de L. rhamnosus, 1×107 UFC/ml de L. plantarum et 1×107 UFC/ml de S. boulardii éliminant respectivement 91.82±10.9%, 89.33±0.58% et 93.20±10.9 dAFM1à 37, 4 et 37 C. Dans cette étude, la liaison maximale à l'AFM1 (100.0±0.58%) s'est produite alors qu'une combinaison des probiotiques susmentionnés était utilisée à une concentration de 1×107 CFU/ml à 37°C avec 0.5 ng/ml d'AFM1. lL combinaison de L. rhamnosus et L. plantarum à une concentration de 1×109 UFC/ml à la même température avec 0.75 ng/ml d'AFM1s’est également montrée hautement efficace (95.86±10.9%). L'utilisation de S. boulardii en combinaison avec Lactobacillus rhamnosus et L. plantarum, peut considérablement réduire le risque de contamination a l’AFM1 dans les produits laitiers.

Keywords [French]

  • AFM1
  • Lait
  • Décontamination
  • Saccharomyces boulardii
  • lactobacillus rhamnosus
  • Lactobacillus plantarum
Abbes, S., Salah-Abbes, J.B., Sharafi, H., Jebali, R., Noghabi, K.A., Oueslati, R., 2013. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo. J Immunotoxicol 10, 279-286.

Assaf, J.C., Atoui, A., Khoury, A.E., Chokr, A., Louka, N., 2018. A comparative study of procedures for binding of aflatoxin M1 to Lactobacillus rhamnosus GG. Braz J Microbiol 49, 120-127.

Bahrami, R., Shahbazi, Y., Nikousefat, Z., 2016. Aflatoxin M1 in milk and traditional dairy products from west part of Iran: occurrence and seasonal variation with an emphasis on risk assessment of human exposure. Food Control 62, 250-256.

Baranyi, N., Kocsubé, S., Varga, J., 2015. Aflatoxins: Climate change and biodegradation. Curr Opin Food Sci 5, 60-66.

Bhatnagar-Mathur, P., Sunkara, S., Bhatnagar-Panwar, M., Waliyar, F., Sharma, K.K., 2015. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234, 119-132.

Biernasiak, J., Piotrowska, M., Libudzisz, Z., 2006. Detoxification of mycotoxins by probiotic preparation for broiler chickens. Mycotoxin Res 22, 230-235.

Bovo, F., Corassin, C.H., de Oliveira, C.A.F., 2015. Descontaminação de aflatoxinas em alimentos por bactérias ácido-láticas. J Health Sci 12, 15-21.

Bovo, F., Corassin, C.H., Rosim, R.E., de Oliveira, C.A., 2013. Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M 1 in phosphate buffer saline solution and in skimmed milk. Food Bioprocess Technol 6, 2230-2234.

Corassin, C.H., Bovo, F., Rosim, R.E., Oliveira, C.A.F.d., 2013. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control 31, 80-83.

Dalié, D., Deschamps, A., Richard-Forget, F., 2010. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: a review. Food Control 21, 370-380.

El-Nezami, H., Kankaanpaa, P., Salminen, S., Ahokas, J., 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 36, 321-326.

Elsanhoty, R.M., Salam, S.A., Ramadan, M.F., Badr, F.H., 2014. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 43, 129-134.

Fallah, A.A., 2010. Assessment of aflatoxin M1 contamination in pasteurized and UHT milk marketed in central part of Iran. Food Chem Toxicol 48, 988-991.

Foroughi, M., Sarabi Jamab, M., Keramat, J., Foroughi, M., 2018. Immobilization of Saccharomyces cerevisiae on Perlite Beads for the Decontamination of Aflatoxin M1 in Milk. J Food Sci 83, 2008-2013.

Galvano, F., Piva, A., Ritieni, A., Galvano, G., 2001. Dietary strategies to counteract the effects of mycotoxins: a review. J Food Prot 64, 120-131.

Gonçalves, B.L., Rosim, R.E., de Oliveira, C.A.F., Corassin, C.H., 2015. The in vitro ability of different Saccharomyces cerevisiae–based products to bind aflatoxin B1. Food control 47, 298-300.

Haskard, C.A., El-Nezami, H.S., Kankaanpaa, P.E., Salminen, S., Ahokas, J.T., 2001. Surface binding of aflatoxin B(1) by lactic acid bacteria. Appl Environ Microbiol 67, 3086-3091.

Hassan, Z.U., Al-Thani, R.F., Migheli, Q., Jaoua, S., 2018. Detection of toxigenic mycobiota and mycotoxins in cereal feed market. Food Control 84, 389-394.

Hernandez-Mendoza, A., Guzman-de-Pena, D., Garcia, H.S., 2009. Key role of teichoic acids on aflatoxin B binding by probiotic bacteria. J Appl Microbiol 107, 395-403.

Ismail, A., Levin, R.E., Riaz, M., Akhtar, S., Gong, Y.Y., de Oliveira, C.A., 2017. Effect of different microbial concentrations on binding of aflatoxin M1 and stability testing. Food Control 73, 492-496.

Kabak, B., Var, I., 2004. Binding of aflatoxin M1 by Lactobacillus and Bifidobacterium strains. Milchwissenschaft 59, 301-303.

Kabak, B., Var, I., 2008. Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. J Environ Sci Health B 43, 617-624.

Kahouli, I., Malhotra, M., Westfall, S., Alaoui-Jamali, M.A., Prakash, S., 2017. Design and validation of an orally administrated active L. fermentum-L. acidophilus probiotic formulation using colorectal cancer Apc Min/+ mouse model. Appl Microbiol Biotechnol 101, 1999-2019.

Kirkpatrick, W.R., Lopez-Ribot, J.L., McAtee, R.K., Patterson, T.F., 2000. Growth competition between Candida dubliniensis and Candida albicans under broth and biofilm growing conditions. J Clin Microbiol 38, 902-904.

Lee, J., Her, J.Y., Lee, K.G., 2015. Reduction of aflatoxins (B(1), B(2), G(1), and G(2)) in soybean-based model systems. Food Chem 189, 45-51.

Mohammadi, H., Mazloomi, S.M., Eskandari, M.H., Aminlari, M., Niakousari, M., 2017. The Effect of Ozone on Aflatoxin M1, Oxidative Stability, Carotenoid Content and the Microbial Count of Milk. Ozone 39, 447-453.

Namvar Rad, M., Razavilar, V., Anvar, S.A.A., Akbari‐Adergani, B., 2018. Selected bio‐physical factors affecting the efficiency of Bifidobacterium animalis lactis and Lactobacillus delbrueckii bulgaricus to degrade aflatoxin M1 in artificially contaminated milk. J Food Saf 38, e12463.

Namvar Rad, M., Razavilar, V., Anvar, S.A.A., Akbari – adergani, B., 2019. Assessment of Lactobacillus delbruekii and Bifidobacterium animals abilities to absorb aflatoxin M1 from milk, Iranian J of Med Mic. 13, 44-55.

Peltonen, K., el-Nezami, H., Haskard, C., Ahokas, J., Salminen, S., 2001. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84, 2152-2156.

Pierides, M., El-Nezami, H., Peltonen, K., Salminen, S., Ahokas, J., 2000. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. J Food Prot 63, 645-650.

Sarimehmetoğlu, B., Küplülü, Ö., 2004. Binding ability of aflatoxin M1 to yoghurt bacteria. Ankara Üniv Vet Fak Derg 51, 195-198.

Sarlak, Z., Rouhi, M., Mohammadi, R., Khaksar, R., Mortazavian, A.M., Sohrabvandi, S., et al., 2017. Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control 71, 152-159.

Sepahdari, A., Ebrahimzadeh Mosavi, H., Sharifpour, I., Khosravi, A., Motallebi, A., Mohseni, M., et al., 2010. Effects of different dietary levels of AFB1 on survival rate and growth factors of Beluga (Huso huso). Iran J Fish Sci 9, 141-150.

Wang, J.-J., Liu, B.-H., Hsu, Y.-T., Yu, F.-Y., 2011. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 22, 964-969.

Xiong, J., Xiong, L., Zhou, H., Liu, Y., Wu, L., 2018. Occurrence of aflatoxin B1 in dairy cow feedstuff and aflatoxin M1 in UHT and pasteurized milk in central China. Food Control 92, 386-390.