Identification of Non-Tuberculosis Mycobacteria by Line Probe Assay and Determination of Drug Resistance Patterns of Isolates in Iranian Patients

Document Type: Original Articles

Authors

1 Departemant of Microbiology, School of Medicin, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Microbiology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran

3 Department of infectious Disease, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences

4 MD Pathologist, Nikan General Hospital, Tehran, Iran

5 RReference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

6 Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran

Abstract

The potentially pathogenic Non-Tuberculosis Mycobacteria (NTM) are emerging nowadays which result in pulmonary and non-pulmonary infections in human. This group of bacteria consists of at least 200 different species. While the pulmonary disease is the most common form of NTM infections, NTM can cause diffused infections as well as extrapulmonary infections in every organ, such as bone marrow, skin, eye, and brain. The NTM cause tuberculosis-like infections, therefore, correct identification of these Mycobacteria is necessary to avoid faulty treatment. Different species of NTM isolates were identified from clinical specimens using phenotypic methods and Line Probe Assay. Minimum Inhibitory Concentration for selected antibiotics was obtained by the broth micro-dilution method. Totally, 42 NTM isolates were identified in this study. Moreover, the frequency of NTM between all positive mycobacterium cultures was estimated at 12%. The most common Rapidly Growing Mycobacteria included Mycolicibacterium fortuitum (30.9%), Mycobacterium abscessus (7.1%), and Mycobacterium chelonae (2.3%), whereas Mycobacterium simiae (40.4%), Mycobacterium kansasii (16.6%), and Mycobacterium avium complex (2.3%) were the most recurring among the Slowly Growing Mycobacteria. Amikacin, clarithromycin, and ciprofloxacin were the most effective antibiotics against isolated NTM. The NTM isolates are frequently being separated from Iranian patients, and are mostly resistant to the wide spectrum of antibiotics. Correct identification and determination of antibiotic susceptibility can be helpful in the healing process of the patients who suffer from non-tuberculosis mycobacterial infections.

Keywords


Article Title [French]

Identification des Mycobactéries non Tuberculeuses en Utilisant le Test de Sonde de Ligne et la Détermination des Modèles de Résistance aux Médicaments des Isolats chez les Patients en Iran

Abstract [French]

Les mycobactéries non tuberculeuses potentiellement pathogènes (MNT) sont en train d'émerger de nos jours, ce qui entraîne des infections pulmonaires et non pulmonaires chez l'homme. Ce groupe de bactéries comprend au moins 200 espèces différentes. Bien que la maladie pulmonaire soit la forme la plus courante d'infections à MNT, la MNT peut provoquer des infections diffusées ainsi que des infections extrapulmonaires dans tous les organes, tels que la moelle osseuse, la peau, les yeux et le cerveau. La MNT provoque des infections de type tuberculose, par conséquent, une identification correcte de ces mycobactéries est nécessaire pour éviter un traitement défectueux. Différentes espèces d'isolats de MNT ont été identifiées à partir d'échantillons cliniques en utilisant des méthodes phénotypiques et un test de sonde de ligne. La concentration minimale inhibitrice pour les antibiotiques sélectionnés a été obtenue par la méthode de micro-dilution du bouillon. Au total, 42 isolats de MNT ont été identifiés dans cette étude. De plus, la fréquence de MNT entre toutes les cultures de mycobactéries positives a été estimée à 12%. Les mycobactéries à croissance rapide les plus courantes comprenaient Mycolicibacterium fortuitum (30,9%), Mycobacterium abscessus (7,1%) et Mycobacterium chelonae (2,3%), tandis que Mycobacterium simiae (40,4%), Mycobacterium kansasii (16,6%) et le complexe Mycobacterium avium (2,3%) étaient les plus récurrents parmi les mycobactéries à croissance lente. L'amikacine, la clarithromycine et la ciprofloxacine étaient les antibiotiques les plus efficaces contre la MNT isolée. Les isolats MNT sont fréquemment séparés des patients iraniens et sont pour la plupart résistants au large spectre des antibiotiques. L'identification et la détermination correctes de la sensibilité aux antibiotiques peuvent être utiles dans le processus de guérison des patients qui souffrent d'infections mycobactériennes non tuberculeuses.

Keywords [French]

  • Modèles de résistance aux médicaments
  • Test de sonde de ligne
  • Mycobactéries non tuberculeuses
Azadi, D., Motallebirad, T., Ghaffari, K., Shojaei, H., 2018. Mycobacteriosis and Tuberculosis: Laboratory Diagnosis. Open Microbiol J 12, 41-58.

Bakula, Z., Modrzejewska, M., Pennings, L., Proboszcz, M., Safianowska, A., Bielecki, J., et al., 2018. Drug Susceptibility Profiling and Genetic Determinants of Drug Resistance in Mycobacterium kansasii. Antimicrob Agents Chemother 62, 01788-17.

Busatto, C., Vianna, J.S., da Silva, L.V., Ramis, I.B., da Silva, P.E.A., 2019. Mycobacterium avium: an overview. Tuberculosis 114, 127-134.

Chavarro-Portillo, B., Soto, C.Y., Guerrero, M.I., 2019. Mycobacterium leprae’s evolution and environmental adaptation. Acta Tropica 197, 105041.

CLSI, 2011. Susceptibility testing of mycobacteria, Nocardiae, and other aerobic actinomycetes, M24-A2. Wayne, PA: Clinica and Laboratory Standards Institute.

Collins, L.F., Clement, M.E., Stout, J.E., 2017. Incidence, Long-Term Outcomes, and Healthcare Utilization of Patients With Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome and Disseminated Mycobacterium avium Complex From 1992–2015. Open Forum Infect Dis 4.

Cowman, S., Burns, K., Benson, S., Wilson, R., Loebinger, M.R., 2016. The antimicrobial susceptibility of non-tuberculous mycobacteria. Jo Infect 72, 324-331.

Cowman, S.A., James, P., Wilson, R., Cookson, W.O.C., Moffatt, M.F., Loebinger, M.R., 2018. Profiling mycobacterial communities in pulmonary nontuberculous mycobacterial disease. PLoS One 13, e0208018.

Fedrizzi, T., Meehan, C.J., Grottola, A., Giacobazzi, E., Fregni Serpini, G., Tagliazucchi, S., et al., 2017. Genomic characterization of Nontuberculous Mycobacteria. Sci Rep 7, 45258.

Heidarieh, P., Mirsaeidi, M., Hashemzadeh, M., Feizabadi, M.M., Bostanabad, S.Z., Nobar, M.G., et al., 2016. In Vitro Antimicrobial Susceptibility of Nontuberculous Mycobacteria in Iran. Microb Drug Resist 22, 172-178.

Khosravi, A.D., Mirsaeidi, M., Farahani, A., Tabandeh, M.R., Mohajeri, P., Shoja, S., et al., 2018. Prevalence of nontuberculous mycobacteria and high efficacy of d-cycloserine and its synergistic effect with clarithromycin against Mycobacterium fortuitum and Mycobacterium abscessus. Infect Drug Resist 11, 2521-2532.

Mahon, C.R., Lehman, D.C., Manuselis, G., 2011. Text book of diagnostic microbiology, Suenders Elsevier, Missouri.

Mäkinen, J., Marttila, H.J., Marjamäki, M., Viljanen, M.K., Soini, H., 2006. Comparison of Two Commercially Available DNA Line Probe Assays for Detection of Multidrug-Resistant Mycobacterium tuberculosis. J Clin Microbiol 44, 350-352.

Moghim, S., Sarikhani, E., Nasr Esfahani, B., Faghri, J., 2012. Identification of Nontuberculous Mycobacteria Species Isolated from Water Samples Using Phenotypic and Molecular Methods and Determination of their Antibiotic Resistance Patterns by E- Test Method, in Isfahan, Iran. Iran J Basic Med Sci 15, 1076-1082.

Nasiri, M.J., Dabiri, H., Fooladi, A.A.I., Amini, S., Hamzehloo, G., Feizabadi, M.M., 2018. High rates of nontuberculous mycobacteria isolation from patients with presumptive tuberculosis in Iran. New Microbes New Infect 21, 12-17.

Schiff, H.F., Jones, S., Achaiah, A., Pereira, A., Stait, G., Green, B., 2019. Clinical relevance of non-tuberculous mycobacteria isolated from respiratory specimens: seven year experience in a UK hospital. Sci Rep 9, 1730.

Shafipour, M., Ghane, M., Rahimi, S., Livani, S., Javid, N., Shakeri, F., et al., 2013. Non tuberculosis Mycobacteria isolated from tuberculosis patients in Golestan province, North of IRAN. Ann Biol Res 4, 133-137.

Shahraki, A.H., Heidarieh, P., Bostanabad, S.Z., Khosravi, A.D., Hashemzadeh, M., Khandan, S., et al., 2015. “Multidrug-resistant tuberculosis” may be nontuberculous mycobacteria. Eur J Intern Med 26, 279-284.

Spaulding, A.B., Lai, Y.L., Zelazny, A.M., Olivier, K.N., Kadri, S.S., Prevots, D.R., et al., 2017. Geographic Distribution of Nontuberculous Mycobacterial Species Identified among Clinical Isolates in the United States, 2009–2013. Ann Am Thorac Soc 14, 1655-1661.

Swenson, C., Zerbe, C.S., Fennelly, K., 2018. Host Variability in NTM Disease: Implications for Research Needs. Fron Microbiol 9, 2901.

van Ingen, J., van der Laan, T., Dekhuijzen, R., Boeree, M., van Soolingen, D., 2010. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents 35, 169-173.

Velayati, A.A., Farnia, P., Mozafari, M., Malekshahian, D., Seif, S., Rahideh, S., et al., 2014. Molecular epidemiology of nontuberculous mycobacteria isolates from clinical and environmental sources of a metropolitan city. PLoS One 9, e114428.

Waak, M.B., LaPara, T.M., Hallé, C., Hozalski, R.M., 2019. Nontuberculous Mycobacteria in Two Drinking Water Distribution Systems and the Role of Residual Disinfection. Environ Sci Technol 53, 8563-8573.

Welch, K., Morse, A., 2002. The clinical profile of end-stage AIDS in the era of highly active antiretroviral therapy. AIDS Patient Care STDS 16, 75-81.

WHO, 2018. Global tuberculosis report 2018.