Extraction, Purification, and Characterization of Trypsin Obtained from the Digestive System of Yellowfin Seabream (Acanthopagrus latus)

Document Type: Original Articles

Authors

1 Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran

2 Department of Proteomics & Biochemistry section Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Abstract

The development of the marine aquaculture industry has led to the generation of significant amounts of fish wastes. Marine farm wastes exert adverse effects on the surrounding area of the cages. On the other hand, wastes of fish and other aquatic animals are regarded as major sources of valuable natural bioactive compounds, including enzymes, proteins, bioactive peptides, oil, amino acids, collagen, gelatin, calcium, biopolymers, and water-soluble minerals. To investigate the potential of marine fish waste, the whole digestive system of yellowfin seabream (Acanthopagrus latus) was extracted for extraction and identification of trypsin enzyme. Fish (179.93±93.67 g; 184±28.17 cm) were caught from the Persian Gulf and stored at -20 °C. Yellowfin seabream were dissected and their whole digestive systems were removed. Samples were thoroughly washed with distilled water and purified through defatting using acetone and ammonium sulfate precipitation. The following issues were assessed: the total and specific activity of trypsin, protein determination, molecular weight, enzyme activity and stability in different pH values and temperatures. The obtained results indicated that specific activity and protein content of trypsin enzyme were 4.4 U and 3.4 mg/ml, respectively. The molecular weight of 23 kDa was reported for trypsin using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method. Maximum activity and stability of trypsin were observed at 60°C and 45°C, respectively. Trypsin demonstrated maximum activity and stability at a pH value of 8.0. In general, the results of the current study suggested that trypsin extracted from the digestive system of yellowfin seabream has considerable potential for industrial applications, such as the food industry, owing to its characteristics and stability under alkaline conditions.

Keywords

Main Subjects


Article Title [French]

Extraction, Purification et Caractérisation de la Trypsine Obtenue à Partir du Système Digestif du Pagre à Nageoires Jaunes (Acanthopagrus latus)

Abstract [French]

Le développement de l'industrie de l'aquaculture marine a conduit à la génération de quantités importantes de déchets de poisson. Les déchets de la ferme marine ont des effets néfastes sur les abords des cages. De plus, les déchets de poisson et d'autres animaux aquatiques sont considérés comme des sources majeures de précieux composés bioactifs naturels, notamment des enzymes, des protéines, des peptides bioactifs, des huiles, des acides aminés, du collagène, de la gélatine, du calcium, des biopolymères et des minéraux hydrosolubles. Pour étudier le potentiel des déchets marins des poissons, l’ensemble du système digestif du pagre à nageoires jaunes (Acanthopagrus latus) a été extrait dans le but d’extraire et d’identifier l’enzyme trypsine. Des poissons (179,93 ± 93,67 g; 184 ± 28,17 cm) ont été capturés dans le golfe persique et conservés à -20 °C. Le pagre à nageoires jaunes a été disséqué et son système digestif entier a été prélevé. Les échantillons ont été soigneusement lavés à l'eau distillée et purifiés après dégraissage à l'aide de précipitations à l'acétone et au sulfate d'ammonium. Les paramètres suivants ont été évalués: l'activité totale et spécifique de la trypsine, l’identification des protéines, le poids moléculaire, l'activité enzymatique et la stabilité à différentes valeurs de pH et de températures. Les résultats obtenus indiquent que l'activité spécifique et la teneur en protéines de l'enzyme trypsine sont de 4,4 U et de 3,4 mg/ml, respectivement. Un poids moléculaire de 23 kDa a été observé pour la trypsine par la méthode d’électrophorèse sur gel de polyacrylamide en présence de dodécylsulfate de sodium (SDS-PAGE). Les activités et stabilités maximales de la trypsine ont été observées à 60 °C et 45 °C, respectivement. A pH 8,0, la trypsine montrait une activité et une stabilité maximales. En somme, les résultats de cette étude suggèrent que la trypsine extraite du système digestif du pagre à nageoires jaunes a un potentiel considérable pour les applications industrielles, telles que l’industrie alimentaire, en raison de ses caractéristiques et de sa stabilité dans des conditions alcalines.

Keywords [French]

  • Purification d'enzymes
  • Pagre à nageoires jaunes (Acanthopagrus latus)
  • Trypsine
  • Déchets de poisson
Bkhairia, I., Ben Khaled, H., Ktari, N., Miled, N., Nasri, M., Ghorbel, S., 2016. Biochemical and molecular characterisation of a new alkaline trypsin from Liza aurata: Structural features explaining thermal stability. Food Chem 196, 1346-1354.

Canada, S., 2009. Human Activity and the Environment: Annual Statistics. Minister responsible for Statistics Canada.

Candiotto, F.B., Freitas-Junior, A.C.V., Neri, R.C.A., Bezerra, R.S., Rodrigues, R.V., Sampaio, L.A., et al., 2018. Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus. Braz J Biol 78, 281-288.

Dos Santos, C.W.V., da Costa Marques, M.E., de Araujo Tenorio, H., de Miranda, E.C., Vieira Pereira, H.J., 2016. Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochem Biophys Rep 8, 29-33.

FAO, 2016. The state of world fisheries and aquaculture, contributing to food security and nutrition for all. Rome.

Ketnawa, S., Benjakul, S., Ling, T.C., Martinez-Alvarez, O., Rawdkuen, S., 2013. Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application. Chem Cent J 7, 79.

Khandagale, A.S., Mundodi, L., Sarojini, B.K., 2017. Isolation and characterizati on of trypsin from fish viscera of Oil Sardine) Sardinella longiceps). Int J Fish Aquat Stud 5, 33-37.

Khandagale, A.S., Sarojini, B.K., Kumari, S.N., Joshi, S.D.S., Nooralabettu, K., 2015. Isolation, Purification, and Biochemical Characterization of Trypsin from Indian Mackerel (Rastralliger kanagurta). J Aquat Food Prod Technol 24, 354-367.

Khangembam, B.K., Chakrabarti, R., 2015. Trypsin from the digestive system of carp Cirrhinus mrigala: purification, characterization and its potential application. Food Chem 175, 386-394.

Khantaphant, S., Benjakul, S., 2010. Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem 120, 658-664.

Kim, M., Jeong, Y., 2013. Purification and Characterization of a Trypsin-Like Protease from Flatfish (Paralichthys olivaceus) Intestine. J Food Biochem 37, 732-741.

Ktari, N., Ben Khaled, H., Nasri, R., Jellouli, K., Ghorbel, S., Nasri, M., 2012. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterisation and potential application as a detergent additive. Food Chem 130, 467-474.

Lordan, S., Ross, R.P., Stanton, C., 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9, 1056-1100.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.

Rani, K., Rana, R., Datt, S., 2012. Review on latest overview of proteases. Int J Life Sci 2, 12-18.

Sawant, R., Nagendran, S., 2014. Protease: An enzyme with multiple industrial application. World J Pharm Sci 6, 568-579.

Shahidi, F., Janak Kamil, Y.V.A., 2001. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Tech 12, 435-464.

Silva, J.F., Esposito, T.S., Marcuschi, M., Ribeiro, K., Cavalli, R.O., Oliveira, V., et al., 2011. Purification and partial characterisation of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chem 129, 777-782.

Vahabnezhad, A., Taghavimotlagh, S.A., Ghodrati Shojaei, M., 2017. Growth pattern and reproductive biology of Acanthopagrus latus from the Persian Gulf. J Survey Fish Sci 4, 18-28.

Yazawa, K., Numata, K., 2014. Recent advances in chemoenzymatic peptide syntheses. Molecules 19, 13755-13774.