Determination of the Effective Dose of Curcumin alone and in Combination with Antimicrobial Peptide CM11 on Promastigote Forms of Iranian Strain of L. major (MRHO / IR / 75 / ER)

Document Type: Original Articles

Authors

1 Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

2 Department of Microbiology, Faculty of Medicine, University of Wasit, Iraq

3 Institute Molecular Biological System Transfer (MBST)

4 Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

5 Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Zoonotic cutaneous leishmaniasis t caused by Leishmania major is spread in focal areas of more than 90 countries in the tropics, subtropics, and southern Europe. In the absence of any effective vaccine, the only means to treat and control leishmaniasis is conventional medication. Glucantime is the first choice of anti-leishmanialdrug, has serious side effects like high toxicity, exorbitant cost, problems with the administration and development of resistance. Curcumin is the active component from the rhizome of herb Curcuma longa, possessing many pharmacological and biological activities with antiprotozoal and anti-proliferative effects which make it a good alternative to existing therapy. Antimicrobial peptides like CM11, a small peptide consisting of 11 amino acids, are also novel potential drugs against at least wide spectrum of microbial organisms. The aim of this study was to evaluate the effect of curcumin alone and in combination with CM11 on promastigote form of L. major (MRHO / IR / 75 / ER) for 12h and 24h in vitro. The results of Giemsa staining showed that the morphology of the flagellum and cell shape increased changed with increasing concentration of curcumin (5 µM, 10 μM, 20 μM, 40 μM and 80 μM). MTT and Trypan blue results demonstrated that the promastigotes were susceptible against curcumin in dose and time dependent manner, while CM11 alone at concentration of 8 µM as well as in combination with 10 and 20 µM curcumin had no significant effect on promastigotes. Our results revealed that curcumin can provide a new curative candidate against cutaneous leishmaniasis.

Keywords

Main Subjects


Article Title [French]

Détermination de la Dose Efficace de Curcumine Seule et en Association avec le Peptide Antimicrobien CM11 sur la Forme Promastigote de la Souche Iranienne Leishmania major (MRHO/IR/75/ER)

Abstract [French]

La leishmaniose cutanée zoonotique causée par Leishmania major est répandue dans certaines zones de plus de 90 pays situés dans des régions tropicales, subtropicales et du sud de l'Europe. En l'absence de vaccin efficace, le seul moyen de traiter et de contrôler la leishmaniose est le traitement conventionnel. Le glucantime constitue le premier choix parmi les agents anti-leishmaniens, mais exerce des effets secondaires graves, notamment une toxicité élevée, des coûts exorbitants, des problèmes d’administration et le développement de résistances. La curcumine est le composant actif du rhizome de la plante Curcuma longa et possède de nombreux impacts pharmacologiques et biologiques. Les effets antiprotozoaires et anti-prolifératifs et anti-prolifératifs de cet agent en font une alternative appropriée au traitement existant. De plus, les peptides antimicrobiens, tels que le CM11, qui est un petit peptide composé de 11 acides aminés, sont de nouveaux médicaments potentiels efficaces contre un large spectre d'organismes microbiens. Le but de cette étude était donc d'évaluer l'influence de la curcumine seule et en association avec le peptide antimicrobien CM11 sur la forme promastigote de L. major (MRHO/IR/75/ER) après 12 et 24 heures d'exposition in vitro. La coloration de Giemsa a indiqué des modifications morphologiques au niveau des cellules du flagelle associées à l’augmentation de la concentration de curcumine administrée (5, 10, 20, 40 et 80 μM). Les résultats du test MTT et du bleu de trypan ont montré que les promastigotes étaient sensibles à la curcumine en fonction de la dose et du temps. De plus, le CM11 seul à la concentration de 8 µM ainsi qu'en association avec 10 et 20 µM de curcumine n'a pas eu d'effet significatif sur les promastigotes. Nos résultats ont révélé que la curcumine peut être considérée comme un nouveau candidat curatif contre la leishmaniose cutanée.

Keywords [French]

  • Peptide antimicrobien CM11
  • Curcumine
  • Glucantime
  • Leishmania major
  • Promastigote
Aerts, A.M., Bammens, L., Govaert, G., Carmona-Gutierrez, D., Madeo, F., Cammue, B., et al., 2011. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front Microbiol 2, 47.

Ahmad, K., 2002. War and gerbils compound Afghan leishmaniasis epidemic. The Lancet Infect Dis 2, 268.

Anand, P., Kunnumakara, A.B., Sundaram, C., Harikumar, K.B., Tharakan, S.T., Lai, O.S., et al., 2008. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25, 2097-2116.

Andreu, D., Ubach, J., Boman, A., Wåhlin, B., Wade, D., Merrifield, R., et al., 1992. Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity. FEBS lett 296, 190-194.

Araujo, C.A., Alegrio, L.V., Gomes, D.C., Lima, M.E.F., Gomes-Cardoso, L., Leon, L.L., 1999. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Mem Inst Oswaldo Cruz 94, 791-794.

Attia, A.M., Ibrahim, F.A., EL-Latif, N.A.A., Aziz, S.W., 2014. Antioxidant effects of curcumin against cadmium chloride-induced oxidative stress in the blood of rats. J Pharmacognosy Phytother 6, 33-40.

Berman, J., 1997. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24, 684-703.

Bharti, A.C., Donato, N., Singh, S., Aggarwal, B.B., 2003. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053-1062.

Biswas, S.K., McClure, D., Jimenez, L.A., Megson, I.L., Rahman, I., 2005. Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Sign 7, 32-41.

Brown, B.A., Hunter, R.C., O'Hare, A., Erim, G., 1993. Hematology: principles and procedures, 6th ed. Lea & Febiger, Philadelphia.

Buhrmann, C., Kraehe, P., Lueders, C., Shayan, P., Goel, A., Shakibaei, M., 2014. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One 9, e107514.

Chan, M.M.-Y., Adapala, N.S., Fong, D., 2005. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res 96, 49-56.

Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R.W., et al., 2007. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5, 873-882.

Delavari, M., Dalimi, A., Ghaffarifar, F., Sadraei, J., 2014. In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of Leishmania major (MRHO/IR/75/ER). Iran J Parasitol 9, 6-13.

Desjeux, P., 1996. Leishmaniasis: public health aspects and control. Clin Dermatol 14, 417-423.

Desjeux, P., 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27, 305-318.

Díaz-Achirica, P., Ubach, J., Guinea, A., Andreu, D., Rivas, L., 1998. The plasma membrane of Leishmania donovani promastigotes is the main target for CA (1-8) M (1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 330, 453-460.

Guerrant, R.L., Walker, D.H., Weller, P.F., 2006. Tropical infectious diseases: principles, pathogens, and practice, Churchill Livingstone, second ed.

Haldar, A.K., Sen, P., Roy, S., 2011. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011, 571242.

Hunter, G.W., Strickland, G.T., 2000. Hunter's tropical medicine and emerging infectious diseases, eighth ed. WB Saunders company, Philadelphia.

JG, P., 2011. Assessment of Leishmania major and Leishmania braziliensis promastigote viability after photodynamic treatment with aluminum phthalocyanine tetrasulfonate (AlPcS4). J Venom Anim Toxins Incl Trop Dis 17, 300-307.

Koide, T., Nose, M., Ogihara, Y., Yabu, Y., Ohta, N., 2002. Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 25, 131-133.

Lofgren, S., Miletti, L., Steindel, M., Bachere, E., Barracco, M., 2008. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol 118, 197-202.

Maheshwari, R.K., Singh, A.K., Gaddipati, J., Srimal, R.C., 2006. Multiple biological activities of curcumin: a short review. Life Sci 78, 2081-2087.

Markle, W.H., Makhoul, K., 2004. Cutaneous leishmaniasis: recognition and treatment. Am Fam Physician 69, 1455-1464.

Maróti, G., Kereszt, A., Kondorosi, E., Mergaert, P., 2011. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162, 363-374.

Mashebe, P., Lyaku, J.R., Mausse, F., 2014. Occurrence of ticks and tick-borne diseases of livestock in Zambezi region: a review. J Agr Sci 6, 142-149.

Moghaddam, M.M., Abolhassani, F., Babavalian, H., Mirnejad, R., Barjini, K.A., Amani, J., 2012. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicro 4, 133-139.

Moore, A.J., Beazley, W.D., Bibby, M.C., Devine, D.A., 1996. Antimicrobial activity of cecropins. J Antimicrob Chemother 37, 1077-1089.

Organization, W.H., 1995. WHO model prescribing information: drugs used in parasitic diseases.

Pinto, J.G., Fontana, L.C., de Oliveira, M.A., Kurachi, C., Raniero, L.J., Ferreira-Strixino, J., 2016. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis. Lasers Med Sci 31, 883-890.

Posner, M., 2010. Integrating systemic agents into multimodality treatment of locally advanced head and neck cancer. Ann Oncol 21, 246-251.

Reynolds, J., 1989. The Extra Pharmacopeia, 29th ed. The Pharmaceutical Press, London.

Shaked-Mishan, P., Ulrich, N., Ephros, M., Zilberstein, D., 2001. Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276, 3971-3976.

Shakibaei, M., Buhrmann, C., Kraehe, P., Shayan, P., Lueders, C., Goel, A., 2014. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS One 9, e85397.

Shakibaei, M., Mobasheri, A., Lueders, C., Busch, F., Shayan, P., Goel, A., 2013. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PloS one 8, e57218.

Singh, S., Sivakumar, R., 2004. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10, 307-315.

Tamang, D.G., Saier Jr, M.H., 2006. The cecropin superfamily of toxic peptides. J Mol Microbiol Biotechnol 11, 94-103.

Tiwari, B., Pahuja, R., Kumar, P., Rath, S.K., Gupta, K.C., Goyal, N., 2017. Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob Agents Chemother 61, 1169-1116.

Toda, S., Miyase, T., Arichi, H., Tanizawa, H., Takino, Y., 1985. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull 33, 1725-1728.

Toden, S., Okugawa, Y., Jascur, T., Wodarz, D., Komarova, N.L., Buhrmann, C., et al., 2015. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36, 355-367.

Venkatesan, N., Punithavathi, D., Arumugam, V., 2000. Curcumin prevents adriamycin nephrotoxicity in rats. Br J pharmacol 129, 231-234.

Wilken, R., Veena, M.S., Wang, M.B., Srivatsan, E.S., 2011. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10, 12.

Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.