Evaluation of Influence of Zeolite/Collagen Nanocomposite (ZC) and Hydroxyapatite (HA) on Bone Healing: A Study on Rabbits

Document Type: Original Articles

Authors

1 Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 assistant professor /science and research university of tehran

3 Universal Scientific Education and Research Network (USERN), Tabriz, Iran

4 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

5 Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Bone healing is still a great challenge in orthopedic surgery and clinical practice. There is a dearth of research investigating the effect of Zeolite/Collagen (ZC) nanocomposite on bone regeneration. In the present study, a critical segmental defect of the rabbit femur was repaired using defects in femurs repaired by ZC nanocomposite, and the effects were examined histologically. In total, 45 rabbits at seven months of age weighing 3.5 kilograms were utilized in this study. After making the bone defects, all animals were randomized into three groups (n=15). In a normal control group (NC), a defect was created, no intervention was made, and the skin incision was sutured. On the other hand, in the ZC group, the nanocomposite of ZC was placed into the created defect. In the hydroxyapatite group (HA), the hydroxyapatite was placed into the created defect. The samples were collected on days 15, 30, and 45 postoperatively and assessed histopathologically. The mean scores of the index of the union were compared and considerable alterations were observed in this regard in the experimental groups (P<0.05). The values of the index of spongiosa demonstrated that on day 15, it was the highest in the ZC group (2.2) and lowest in the HA and NC groups (0.6). Moreover, the values of the index of bone marrow demonstrated no noticeable alteration among the values of the index of bone marrow in the experimental groups (P>0.05). The findings of this study demonstrated that ZC nanocomposite might be considered for reconstruction in bone damages. It seems the ZC nanocomposite bears a crucial capability in the reconstruction of bone damages and might be used as a biological frame in bone damages.

Keywords

Main Subjects


Article Title [French]

Evaluation de l'Influence des Nanocomposites de Zéolite / Collagène (ZC) et d'Hydroxyapatite (HA) sur la Consolidation Osseuse: une Étude sur les Lapins

Abstract [French]

: La consolidation osseuse reste un défi de taille en chirurgie orthopédique en pratique clinique. La littérature relative aux effets du nanocomposite de zéolite / collagène sur la régénération osseuse est médiocre. Dans la présente étude, un défaut segmentaire critique du fémur de lapin a été réparé en utilisant des défauts des fémurs réparés par un nanocomposite de zéolite / collagène et les effets ont été examinés histologiquement. Quarante-cinq lapins âgés d'environ sept mois et d'un poids de 3,5 kg ont été utilisés. Après la création des défauts osseux, tous les animaux ont été randomisés en trois groupes et chaque groupe comprenait 15 animaux Dans le groupe témoin normal (TN), un défaut a été créé et aucun l'intervention n'a été réalisée et l'incision de la peau a été suturée. Dans le groupe zéolite / collagène (ZC), le nanocomposite de zéolite / collagène a été placé dans le défaut créé. Dans le groupe hydroxyapatite (HA), l'hydroxyapatite a été placée dans le défaut créé. Les échantillons ont été prélevés aux jours 15, 30 et 45 ans et évalués histopathologiquement. Les scores moyens de l'indice d'union ont été comparés et des modifications considérables ont été observées parmi valeurs d'indice d'union dans les groupes expérimentaux (p <0,05). Les valeurs de l'indice de spongiosité démontraient qu'au 15ème jour, il était le plus élevé dans le groupe zéolite / collagène (2,2) et le plus bas dans les groupes d'hydroxyapatite et de contrôle normal (0,6). Les valeurs d'indice de la moelle osseuse il n'y avait pas d'altération notable entre les valeurs d'indice de la moelle osseuse dans les groupes expérimentaux (P> 0,05). Les résultats de notre enquête ont démontré que la reconstruction des dommages osseuses par un nanocomposite zéolite / collagène pourrait être envisagée. Il semble que le nanocomposite zéolite / collagène possède une capacité cruciale dans la reconstruction des dommages osseuses et pourrait être utilisé comme un cadre biologique pour les dommages osseuses.

Keywords [French]

  • Régénération Osseuse
  • Évaluation histopathologique
  • Nanocomposite, Nano Particules de Zéolite / Collagène, Lapins
Arcos, D., Vallet-Regí, M., 2010. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia 6, 2874-2888.

Auerbach, S.M., Carrado, K.A., Dutta, P.K., 2003. Handbook of zeolite science and technology, CRC press.

Banu, J., Varela, E., Guerra, J.M., Halade, G., Williams, P.J., Bahadur, A.N., et al., 2012. Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss. Nutrition research 32, 965-975.

Beachley, V., Wen, X., 2010. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35, 868-892.

Bedi, R.S., Chow, G., Wang, J., Zanello, L., Yan, Y.S., 2012. Bioactive Materials for Regenerative Medicine: Zeolite‐Hydroxyapatite Bone Mimetic Coatings. Advanced Engineering Materials 14, 200-206.

Brydone, A.S., Meek, D., Maclaine, S., 2010. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H 224, 1329-1343.

Ceyhan, T., Tatlier, M., Akçakaya, H., 2007. In vitro evaluation of the use of zeolites as biomaterials: effects on simulated body fluid and two types of cells. Journal of Materials Science: Materials in Medicine 18, 1557-1562.

Chou, Y.F., Huang, W., Dunn, J.C., Miller, T.A., Wu, B.M., 2005. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials 26, 285-295.

Erol, M.M., Mourino, V., Newby, P., Chatzistavrou, X., Roether, J.A., Hupa, L., et al., 2012. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomater 8, 792-801.

Iqbal, N., Kadir, M.R.A., Mahmood, N.H.B., Yusoff, M.F.M., Siddique, J.A., Salim, N., et al., 2014. Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceramics International 40, 16091-16097.

Jayakumar, P., Di Silvio, L., 2010. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 224, 1415-1440.

Kamitakahara, M., Ohtsuki, C., Miyazaki, T., 2007. Coating of bone-like apatite for development of bioactive materials for bone reconstruction. Biomed Mater 2, R17-23.

Keeting, P.E., Oursler, M.J., Wiegand, K.E., Bonde, S.K., Spelsberg, T.C., Riggs, B.L., 1992. Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res 7, 1281-1289.

Khang, D., Carpenter, J., Chun, Y.W., Pareta, R., Webster, T.J., 2010. Nanotechnology for regenerative medicine. Biomed Microdevices 12, 575-587.

Kihara, T., Zhang, Y., Hu, Y., Mao, Q., Tang, Y., Miyake, J., 2011. Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity. J Biosci Bioeng 111, 725-730.

Laurencin, C., Khan, Y., El-Amin, S.F., 2006. Bone graft substitutes. Expert Rev Med Devices 3, 49-57.

Li, X., Xie, J., Lipner, J., Yuan, X., Thomopoulos, S., Xia, Y., 2009. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9, 2763-2768.

Linh, N.T.B., Min, Y.K., Song, H.Y., Lee, B.T., 2010. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials 95, 184-191.

Liu, Y., Chan, J.K., Teoh, S.H., 2015. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med 9, 85-105.

Longley, L., Fiddes, M., O'Brien, M., 2008. Anaesthesia of Exotic Pets, Elsevier Saunders.

Mousavi, G., Rezaie, A., 2011. Biomechanical Effects of Calcium Phosphate Bone Cem ent and Bone Matrix Gelatin Mixture on Healing of Bone Defect in Rabbits. World Appl. Sci. J 13, 2042-2046.

Reichert, J.C., Wullschleger, M.E., Cipitria, A., Lienau, J., Cheng, T.K., Schutz, M.A., et al., 2011. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop 35, 1229-1236.

Richardson, V.C., 2008. Rabbits: health, husbandry and diseases, John Wiley & Sons.

Suckow, M.A., Stevens, K.A., Wilson, R.P., 2012. The laboratory rabbit, guinea pig, hamster, and other rodents, Academic Press.

Zhang, Q., Tan, K., Ye, Z., Zhang, Y., Tan, W., Lang, M., 2012. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system. Materials Science and Engineering: C 32, 2589-2595.