Phylogenetic Analysis of bor Gene in an Escherichia coli Strain 1378 (O78:K80) Isolated from an Avian Colibacillosis Case in Tehran, Iran

Document Type : Short Communication


1 Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

2 Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran

3 Department of FMD, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran

4 Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran


Colibacillosis is known as a fatal bacterial disease resulting in a high level of commercial loss worldwide. This study amid to elucidate the sequence, genetic characteristics, and phylogeny of the bor gene in Escherichia coli (E. coli) strain c1378 (O78:K80) isolated from avian colibacillosis in Iran and develop a rapid and optimal polymerase chain reaction (PCR) molecular-based technique with specific primers to detect this gene in E. coli. A virulent avian E. coli (i.e., laboratory designation E. coli strain c1378) isolated from a chicken with systemic colibacillosis from a broiler farm in Tehran, Iran, in 2004 was used as a source of the bor gene. After DNA extraction, PCR method was used to amplify the bor gene. A 658 bp fragment of the bor gene was amplified, sequenced, blasted, and phylogenetically studied. The most similar sequences to the bor gene in E. coli strain c1378 were E. coli APEC O78, Enterobacteria phage HK630, and Escherichia coli BW2952, respectively. There was a high similarity between the bor gene in E. coli bacteria with their phage and plasmid. Moreover, a high similarity was observed between the bor and iss genes (approximately 92%) showing that they were homologous genes. In addition, the similarity analysis of different bacterial species, as well as their plasmid and bacteriophage, to the bor gene indicated that the highest similarity to O78:K80 was related to Paracoccidioides brasiliensis, Bacillus thuringiensis CT43 plasmid pBMB0558, and Salmonella enterica subsp. enterica serovar Kentucky strain CVM29188 plasmid, respectively. Altogether, the results of the present study confirmed the presence of the bor gene in the studied isolates and clarified its sequence, phylogenetic relationship, and similarities of E. coli strain c1378 (O78:K80) isolated from avian colibacillosis.


Main Subjects

Article Title [French]

Analyse phylogénétique du gène bor dans une souche 1378 (O78:K80) d'Escherichia coli isolée d'un cas de colibacillose aviaire à Téhéran, en Iran

Abstract [French]

La colibacillose est connue comme une maladie bactérienne mortelle entraînant un niveau élevé de pertes commerciales dans le monde entier. Cette étude visait à élucider la séquence, les caractéristiques génétiques et la phylogénie du gène bor de la souche d'Escherichia coli (E. coli) χ1378 (O78:K80) isolée de la colibacillose aviaire en Iran ainsi qu’à développer une technique moléculaire rapide et optimale de réaction en chaîne de la polymérase (PCR) avec des amorces spécifiques dédiées à la détection de ce gène dans E. coli. La souche d’E. coli aviaire virulente (nommée souche χ1378 d’E. coli) isolé d'un poulet à la colibacillose systémique d'une ferme de poulets de chair à Téhéran, en Iran, en 2004, a été utilisé comme source du gène bor. Après extraction de l'ADN, le gène bor a été amplifié par PCR. De ce fait, un fragment de 658 pb du gène bor a été amplifié, séquencé, explosé et étudié phylogénétiquement. Les séquences les plus similaires au gène bor dans la souche χ1378 d’E. coli étaient respectivement E. coli APEC O78, Enterobacteria phage HK630 et E. coli BW2952. Il y avait une grande similitude entre le gène bor dans la bactérie E. coli avec leur phage et leur plasmide. De plus, une grande similarité a été observée entre les gènes bor et iss (environ 92%), montrant qu'il s'agissait de gènes homologues. En outre, l'analyse de similarité du gène bor appartenant à différentes espèces bactériennes, ainsi que de leurs plasmides et bactériophages, indique que la similarité la plus élevée avec O78:K80 est liée Paracoccidioides brasiliensis, Bacillus thuringiensis CT43, plasmide pBMB0558, et Salmonella enterica subsp, plasmide de la souche CVM29188 d'enterica sérovar Kentucky, respectivement. En somme, les résultats de la présente étude ont confirmé la présence du gène bor dans les isolats étudiés et révélé sa séquence, sa relation phylogénétique et les similitudes de la souche E. coli χ1378 (O78:K80) isolée de la colibacillose aviaire.

Keywords [French]

  • E. coli
  • Colibacillose
  • Aviaire
  • identification
Barondess, J.J., Beckwfth, J., 1990. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346, 6287, 871-874.
Barondess, J.J., Beckwith, J., 1995. bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J Bacteriol 177, 5, 1247-1253.
Bekal, S., Brousseau, R., Masson, L., Prefontaine, G., Fairbrother, J., Harel, J., 2003. Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. J Clin Microbiol 41, 5, 2113-2125.
Casjens, S.R., Hendrix, R.W., 2015. Bacteriophage lambda: early pioneer and still relevant. Virology 479, 310-330.
Chuba, P.J., Leon, M.A., Banerjee, A., Palchaudhuri, S., 1989. Cloning and DNA sequence of plasmid determinant iss, coding for increased serum survival and surface exclusion, which has homology with lambda DNA. Mol Gen Genet MGG 216, 2, 287-292.
Doorduijn, D.J., Rooijakkers, S.H., van Schaik, W., Bardoel, B.W., 2016. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology 221, 10, 1102-1109.
Horne, S.M., Pfaff-McDonough, S.J., Giddings, C.W., Nolan, L.K., 2000. Cloning and sequencing of the iss gene from a virulent avian Escherichia coli. Avian Dis, 44, 1, 179-184.
Johnson, T.J., Wannemuehler, Y.M., Nolan, L.K., 2008. Evolution of the iss gene in Escherichia coli. Appl Environ Microbiol 74, 8, 2360-2369.
Kant, J., 1995. Direct DNA sequencing in the clinical laboratory. Clin Chem 41, 10, 1407-1409.
Lynne, A.M., Skyberg, J.A., Logue, C.M., Nolan, L.K., 2007. Detection of Iss and Bor on the surface of Escherichia coli. J Appl Microbiol 102, 3, 660-666.
Ranjbar, M.M., Ahmadi, N.A., Ghorban, K., Ghalyanchilangeroudi, A., Dadmanesh, M., Amini, H.-R., 2015. Immnoinformatics: Novel view in understanding of immune system function, databases and prediction of immunogenic epitopes. Koomesh 17, 1, 18-26
Russo, T.A., Johnson, J.R., 2006. Extraintestinal isolates of Escherichia coli: identification and prospects for vaccine development. Expert Rev Vaccines 5, 1, 45-54.
Serra-Moreno, R., Acosta, S., Hernalsteens, J.P., Jofre, J., Muniesa, M., 2006. Use of the lambda red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 7, 31.
Vandekerchove, D., De Herdt, P., Laevens, H., Pasmans, F., 2004. Colibacillosis in caged layer hens: characteristics of the disease and the aetiological agent. Avian Pathol 33, 2, 117-125.
Wooley, R.E., Spears, K.R., Brown, J., Nolan, L.K., Fletcher, O.J., 1992. Relationship of complement resistance and selected virulence factors in pathogenic avian Escherichia coli. Avian Dis, 36, 3, 679-684.
Zahraei, S., Rajabi, Z., Modirsanei, M., Bokaei, S., 2004. Evaluation of the immunogenicity of endemic Escherichia coli serotypes isolated from poultry in Iran. J Vet Res 59, 2, 189-195.