The Effect of Oral Administration of Zinc Oxide Nanoparticles on Quantitative and Qualitative Properties of Arabic Ram Sperm and Some Antioxidant Parameters of Seminal Plasma in the Non-Breeding Season

Document Type : Original Articles


1 Department of Animal Science, Ramin Agricultural and Natural Resources University of Khuzestan, Ahwaz, Iran

2 Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Khuzestan, Iran

3 Department of Breeding and Production of Laboratory Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran


Zinc is an essential mineral and accepted as a trace element in the animal nutrition and for its role in biological enzymatic pathways. This study aimed to investigate the effect of oral administration of zinc oxide nanoparticles (ZnONPs) on some of the antioxidant parameters of semen plasma, quantitative and qualitative properties of Arabic ram sperm in the non-breeding season. Twelve adult Arabic rams (about 3-5 years old, 70 ±2.1 kg) were randomly assigned to receive one of the three levels of dietary ZnONPs (control; 0, group 1; 40 ppm and group 2; 80 ppm). Results showed that using different levels of ZnONPs increased the activity of superoxide dismutase enzyme (SOD) and total antioxidant capacity (TAC) of semen plasma significantly compared  with the control group (P<0.05). Motility (74.83%), viability (76.90%), semen volume (1.76 ml) and sperm concentration (1418×106/ml) were significantly (P<0.05) higher in ZnONPs supplemented groups compared with the control group. The sperm morphological abnormalities reduced significantly in treated groups (10.46 and 9.07%) compared with the control group (12.66%; P <0.05). Also, the results suggested that 80 ppm level of ZnONPs increased the functionality of sperm membrane (44.38%) compared with other groups (37 and 35.66%, respectively for groups 1 and control) (P<0.05). Based on the results, using 80 ppm level of ZnONPs lead to an improvement in the activity of superoxide dismutase enzyme (48.62 ml) and total antioxidant capacity of semen plasma (111.88 µg/ml) compared with other groups  (P<0.05). In conclusion using 80 ppm level of ZnONPs had a positive effect on the quantitative and qualitative properties of sperm and lead to a significant betterment in the activity of some antioxidant parameters of Arabic ram semen in the non-breeding season.


Main Subjects

Article Title [French]

L’effet de administration orale des nanoparticules d’oxyde de zinc sur les propriétés quantitatives et qualitatives du sperme ainsi que sur les paramètres antioxydants du liquide séminal chez le mouton arabe en-dehors de sa saison de reproduction

Abstract [French]

Le zinc est un minéral essentiel étant considéré comme un oligo-élément dans la nutrition animale, étant donné son rôle dans les voies biologiques enzymatiques. L’objectif de cette étude était d’étudier l’effet de l’administration orale des naoparticules d’oxyde de zinc (ZnONPs) sur les paramètres antioxydants du liquide séminal, ainsi que sur les propriétés quantitative et qualitative du sperme du mouton arabe en-dehors de la saison de reproduction. Un total de 12 moutons arabes adultes a été sélectionné de façon aléatoire pour recevoir l’une des 3 concentrations de ZnONPs (control; 0, groupe 1; 40 ppm and groupe 2; 80 ppm). Nos résultats ont démontré l’effet stimulant de l’administration des différents taux de zinc sur l’activité de l’enzyme superoxide dismutase (SOD) ainsi que sur la capacité antioxydante totale (TAC) du liquide séminal, ces paramétres montrant une augmentation significative comparé au groupe control (P<0.05). La motilité (74.83%), la viabilité (76.90%), le volume du liquide séminal (1.76 ml) et la concentration de sperme (1418×106/ml) étaient significativement plus élevés dans les groupes traités avec ZnONPs comparés au groupe control (P<0.05). De plus, les malformations observées au niveau des spermes des groupes traités (10.46 and 9.07%) étaient mois importantes par rapport au groupe control (12.66%; P <0.05). Nos résultats ont également révélé qu’une supplémentation de 80 ppm de ZnONPs augmente de façon significative la fonctionnalité de la membrane des spermes (44.38%) comparés aux groupes 1 (37) et control (35.66%) (P<0.05). De plus, selon nos résultats, une supplémentation en ZnONPs à une concentration de 80 ppm contribue à l’amélioration de l’activité enzymatique de la superoxide dismutase (48.62 ml) ainsi que de la capacité antioxydante totale du liquide séminal comparé (111.88 µg/ml) au groupe control (P<0.05). En conclusion, une supplémentation de 80 ppm de ZnONPs montre un effet positif sur les propriétés quantitatives et qualitatives du sperme et peut mener à une amélioration significative des paramètres antioxydants du liquide séminal chez le mouton arabe en-dehors de sa saison de reproduction.

Keywords [French]

  • Mouton
  • Sperme
  • Superoxyde dismutase
  • Capacité antioxydant totale
  • Nanoparticules d’oxyde de Zinc
Abbasalipourkabir, R., Moradi, H., Zarei, S., Asadi, S., Salehzadeh, A., Ghafourikhosroshahi, A., et al., 2015. Toxicity of zinc oxide nanoparticles on adult male Wistar rats. Food Chem Toxicol 84, 154-160.
Adeel, M., Ijaz, A., Aleem, M., Rehman, H., Yousaf, M.S., Jabbar, M.A., 2009. Improvement of liquid and frozen-thawed semen quality of Nili-Ravi buffalo bulls (Bubalus bubalis) through supplementation of fat. Theriogenology 71, 1220-1225.
Afifi, M., Almaghrabi, O.A., Kadasa, N.M., 2015. Ameliorative Effect of Zinc Oxide Nanoparticles on Antioxidants and Sperm Characteristics in Streptozotocin-Induced Diabetic Rat Testes. Biomed Res Int 2015, 153573.
Al-Mubaddel, F.S., Haider, S., Al-Masry, W.A., Al-Zeghayer, Y., Imran, M., Haider, A., et al., 2017. Engineered nanostructures: A review of their synthesis, characterization and toxic hazard considerations. Ara J Chem 10, S376-S388.
Alvarez, J.G., Touchstone, J.C., Blasco, L., Storey, B.T., 1987. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 8, 338-348.
Barkhordari, A., Hekmatimoghaddam, S., Jebali, A., Khalili, M.A., Talebi, A., Noorani, M., 2013. Effect of zinc oxide nanoparticles on viability of human spermatozoa. Iran J Reprod Med 11, 767-771.
Baumber, J., Ball, B.A., Gravance, C.G., Medina, V., Davies-Morel, M.C., 2000. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 21, 895-902.
Bedwal, R.S., Bahuguna, A., 1994. Zinc, copper and selenium in reproduction. Experientia 50, 626-640.
Casao, A., Mendoza, N., Perez-Pe, R., Grasa, P., Abecia, J.A., Forcada, F., et al., 2010. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 48, 39-46.
Chvapil, M., 1973. New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes. Life Sci 13, 1041-1049.
Gavella, M., Lipovac, V., 1998. In vitro effect of zinc on oxidative changes in human semen. Androl 30, 317-323.
Gromadzka-Ostrowska, J., Dziendzikowska, K., Lankoff, A., Dobrzynska, M., Instanes, C., Brunborg, G., et al., 2012. Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214, 251-258.
Hadwan, M.H., Almashhedy, L.A., Alsalman, A.R., 2012. Oral zinc supplementation restores high molecular weight seminal zinc binding protein to normal value in Iraqi infertile men. BMC Urol 12, 32.
Hernandez-Sierra, J.F., Ruiz, F., Pena, D.C., Martinez-Gutierrez, F., Martinez, A.E., Guillen Ade, J., et al., 2008. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4, 237-240.
Ibrahim, S.A., Yousri, R.M., 1992. Effect of dietary zinc, season and breed on semen quality and body weight in goats. Int J Anim Sci 7 5-12.
Isaac, A.V., Kumari, S., Nair, R., Urs, D.R., Salian, S.R., Kalthur, G., et al., 2017. Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochem Biophys Res Commun 494, 656-662.
Khan, R.U., 2011. Antioxidants and poultry semen quality. World's Poultry Sci J 67, 297-308.
Kreider, J.L., Tindall, W.C., Potter, G.D., 1985. Inclusion of bovine serum albumin in semen extenders to enhance maintenance of stallion sperm viability. Theriogenology 23, 399-408.
Kołodziejczak-Radzimska, A., Jesionowski, T., 2014. Zinc Oxide—From Synthesis to Application: A Review. Materials 7, 2833.
Kumar, N., Verma, R.P., Singh, L.P., Varshney, V.P., Dass, R.S., 2006. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls. Reprod Nutr Dev 46, 663-675.
Lan, Z., Yang, W.X., 2012. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine (Lond) 7, 579-596.
Lewis-Jones, D.I., Aird, I.A., Biljan, M.M., Kingsland, C.R., 1996. Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum Reprod 11, 2465-2467.
Martin, G.B., White, C.L., Markey, C.M., Blackberry, M.A., 1994. Effects of dietary zinc deficiency on the reproductive system of young male sheep: testicular growth and the secretion of inhibin and testosterone. J Reprod Fertil 101, 87-96.
McCord, J.M., Fridovich, I., 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055.
Moce, E., Arouca, M., Lavara, R., Pascual, J.J., 2000. Effect of dietary zinc and vitamin supplementation on semen characteristics of high growth rate males during summer season. World Rabbit Congress, pp. 20, 203-209.
Nazarizadeh, A., Asri-Rezaie, S., 2016. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats. AAPS Pharm Sci Tech 17, 834-843.
Plante, M., de Lamirande, E., Gagnon, C., 1994. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 62, 387-393.
Prasad, A.S., Bao, B., Beck, F.W., Kucuk, O., Sarkar, F.H., 2004. Antioxidant effect of zinc in humans. Free Radic Biol Med 37, 1182-1190.
Rahman, H.U., Qureshi, M.S., Khan, R.U., 2014. Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of beetal bucks. Reprod Domest Anim 49, 1004-1009.
Rogalska, J., Brzoska, M.M., Roszczenko, A., Moniuszko-Jakoniuk, J., 2009. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177, 142-152.
Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L., et al., 2010. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199, 389-397.
Song, Y., Guan, R., Lyu, F., Kang, T., Wu, Y., Chen, X., 2014. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat Res 769, 113-118.
Talebi, A.R., Khorsandi, L., Moridian, M., 2013. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet 30, 1203-1209.
Ueda, H., Kayama, F., Mori, N., Doi, Y., Fujimoto, S., 1991. Effects of Dietary Zinc Deficiency on Protein Secretory Functions of the Mouse Testis. Arch Histol Cytol 54, 401-410.
Wang, B., Feng, W., Wang, M., Wang, T., Gu, Y., Zhu, M., et al., 2008. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nano Res 10, 263-276.
Wong, W.Y., Merkus, H.M.W.M., Thomas, C.M.G., Menkveld, R., Zielhuis, G.A., Steegers-Theunissen, R.P.M., 2002. Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil Steril 77, 491-498.
Zhang, L., Wang, Y.X., Xiao, X., Wang, J.S., Wang, Q., Li, K.X., et al., 2017. Effects of Zinc Glycinate on Productive and Reproductive Performance, Zinc Concentration and Antioxidant Status in Broiler Breeders. Biol Trace Element Res 178, 320-326