Potential Role of microRNAs in Response to Aeromonas Infection in Fish

Document Type : Review Article

Authors

1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

2 Department of Biological Sciences, Florida State University, USA

3 Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran

4 Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran

10.32592/ARI.2023.78.6.1668

Abstract

The genus Aeromonas is a widespread pathogen that includes more than 30 Gram-negative species, many of which are opportunistic bacteria. Aeromonas species are naturally distributed in various aquatic sources. Infectious processes in marine animals such as fish usually develop under stressful conditions, and when their immune systems are weakened. MicroRNAs (miRNAs/miRs) are short, non-coding RNAs that post-transcriptionally regulate gene expression. Their diverse biological functions, such as influencing cell development, proliferation, differentiation, tumorigenesis, metabolism, and apoptosis have been studied in various animals. Fish is the most important source of aquatic nutrients throughout the world, and its market is constantly growing. Overpopulation in aquaculture brings infectious diseases that threaten the development of aquaculture around the world. There is extensive evidence that microRNAs are involved in modulating infectious processes and regulating the inflammatory response to major bacterial fish infections, including Aeromonas. Here, we review the current literature on the fish microRNA repertoire and outline the physiological roles assigned to microRNAs to provide a foundation for future research during Aeromonas infection. Understanding the interaction between microRNAs and Aeromonas may provide clues to a remarkable strategy for preventing Aeromonas infections in fish.

Keywords

Main Subjects


References
1. Barker G. Bacterial diseases. BSAVA manual of
ornamental fish: BSAVA Library; 2001. p. 185-94.
2. Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh
AI. Emerging Aeromonas species infections and their
significance in public health. ScientificWorldJournal.
2012;2012:625023.
3. Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh
AI. Emerging Aeromonas species infections and their
significance in public health. The Scientific World
Journal. 2012;2012.
4. Pablos M, Remacha M-A, Rodríguez-Calleja J-M,
Santos J, Otero A, García-López M-L. Identity,
virulence genes, and clonal relatedness of Aeromonas
isolates from patients with diarrhea and drinking water.
European journal of clinical microbiology & infectious
Sadeghi et al / Archives of Razi Institute, Vol. 78, No. 6 (2023) 1668-1679 1677
diseases. 2010;29(9):1163-72.
5. Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles
MR. Virulence factors of Aeromonas hydrophila: in the
wake of reclassification. Frontiers in Microbiology.
2016;7:1337.
6. Janda JM, Abbott SL. The genus Aeromonas:
taxonomy, pathogenicity, and infection. Clinical
microbiology reviews. 2010;23(1):35-73.
7. Kozińska A, Pękala A. Characteristics of disease
spectrum in relation to species, serogroups, and
adhesion ability of motile aeromonads in fish. The
Scientific World Journal. 2012;2012.
8. Hoole D, Bucke D, Burgess P, Wellby I. Diseases of
carp and other cyprinid fishes. 2001.
9. Laith A, Najiah M. Aeromonas hydrophila:
antimicrobial susceptibility and histopathology of
isolates from diseased catfish, Clarias gariepinus
(Burchell). Journal of Aquaculture Research and
Development. 2014;5(2).
10. Khoei SG, Manoochehri H, Saidijam M. Systemic
biological study for identification of miR-299-5p target
genes in cancer. Meta Gene. 2020;24:100655.
11.Chu Q, Xu T. miR-192 targeting IL-1RI regulates the
immune response in miiuy croaker after pathogen
infection in vitro and in vivo. Fish & shellfish
immunology. 2016;54:537-43.
12. Wang Y, Xu G, Han J, Xu T. miR-200a-3p regulates
TLR1 expression in bacterial challenged miiuy croaker.
Developmental & Comparative Immunology.
2016;63:181-6.
13. Khoei SG, Sadeghi H, Samadi P, Najafi R, Saidijam M.
Relationship between Sphk1/S1P and microRNAs in
human cancers. Biotechnology and applied
biochemistry. 2021;68(2):279-87.
14. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA
maturation: stepwise processing and subcellular
localization. The EMBO journal. 2002;21(17):4663-70.
15. Zeng Y, Cullen BR. Sequence requirements for micro
RNA processing and function in human cells. Rna.
2003;9(1):112-23.
16. Lee RC, Feinbaum RL, Ambros V. The C. elegans
heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. cell. 1993;
75(5):843-54.
17. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N,
Estelle M, et al. A plant miRNA contributes to
antibacterial resistance by repressing auxin signaling.
Science. 2006;312(5772):436-9.
18. Aguilar C, Mano M, Eulalio A. MicroRNAs at the host–
bacteria interface: host defense or bacterial offense.
Trends in microbiology. 2019;27(3):206-18.
19.Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA.
Stress sensor Gadd45 genes as therapeutic targets in
cancer. Cancer therapy. 2009;7(A):268.
20. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, et al.
MicroRNA-148/152 impair innate response and antigen
presentation of TLR-triggered dendritic cells by
targeting CaMKIIα. The Journal of Immunology.
2010;185(12):7244-51.
21.Chu Q, Gao Y, Bi D, Xu T. MicroRNA-148 as a
negative regulator of the common TLR adaptor
mediates inflammatory response in teleost fish. Sci Rep.
2017;7(1):4124.
22. Fang Y, Xu X-y, Shen Y, Li J. miR-148 targets
CiGadd45ba and CiGadd45bb to modulate the
inflammatory response to bacterial infection in grass
carp. Developmental & Comparative Immunology.
2020;106:103611.
23. Galindo CL, Fadl AA, Sha J, Gutierrez Jr C, Popov VL,
Boldogh I, et al. Aeromonas hydrophila cytotoxic
enterotoxin activates mitogen-activated protein kinases
and induces apoptosis in murine macrophages and
human intestinal epithelial cells. Journal of Biological
Chemistry. 2004;279(36):37597-612.
24.Cao M, Seike M, Soeno C, Mizutani H, Kitamura K,
Minegishi Y, et al. MiR-23a regulates TGF-β-induced
epithelial-mesenchymal transition by targeting Ecadherin in lung cancer cells. Int J Oncol.
2012;41(3):869-75.
25. Fang Y, Xu X-y, Shen Y, Li J. miR-23a-3p and miR23a-5p target CiGadd45ab to modulate inflammatory
response and apoptosis in grass carp. Fish & shellfish
immunology. 2020;98:34-44.
26. Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, et
al. Upregulation of miR-23a approximately 27a
approximately 24 decreases transforming growth factorbeta-induced tumor-suppressive activities in human
hepatocellular carcinoma cells. International journal of
cancer. 2008;123(4):972-8.
27. Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N,
Matsushima K. Essential involvement of interleukin‐8
(IL‐8) in acute inflammation. Journal of leukocyte
biology. 1994;56(5):559-64.
28. Zhang B-c, Zhou Z-j, Sun L. pol-miR-731, a teleost
miRNA upregulated by megalocytivirus, negatively
regulates virus-induced type I interferon response,
1678 Sadeghi et al / Archives of Razi Institute, Vol. 78, No. 6 (2023) 1668-1679
apoptosis and cell cycle arrest. Scientific reports.
2016;6(1):1-14.
29. Fang Y, Xu X-Y, Tao L, Shen Y, Li J. Effects of
microRNA-731 on inflammation and apoptosis by
targeting CiGadd45aa in grass carp. Fish & shellfish
immunology. 2020;97:493-9.
30. Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y,
Iwatsuki M, Tanaka Y, et al. MicroRNA-200b
Regulates Cell Proliferation, Invasion, and Migration by
Directly Targeting ZEB2 in Gastric Carcinoma. Annals
of Surgical Oncology. 2012;19(3):656-64.
31. Naghavian R, Ghaedi K, Kiani-Esfahani A,
Ganjalikhani-Hakemi M, Etemadifar M, Nasr-Esfahani
MH. miR-141 and miR-200a, revelation of new possible
players in modulation of Th17/Treg differentiation and
pathogenesis of multiple sclerosis. PloS one.
2015;10(5):e0124555.
32. Xu X-Y, Shen Y-B, Fu J-J, Lu L-Q, Li J-L.
Determination of reference microRNAs for relative
quantification in grass carp (Ctenopharyngodon idella).
Fish & shellfish immunology. 2014;36(2):374-82.
33. Fang Y, Xu X-Y, Zhang M, Bai Y, Zhang X-s, Shen Y,
et al. Cloning, functional analysis, and microRNAinduced negative regulation of growth arrest and DNA
damage-inducible 45 γ (Gadd45g) in grass carp
(Ctenopharyngodon idella). Developmental &
Comparative Immunology. 2019;99:103400.
34. Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a
dominant, negative regulator of the innate immune
response. Frontiers in immunology. 2014;5:578.
35. Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y,
Iwatsuki M, Tanaka Y, et al. MicroRNA-200b regulates
cell proliferation, invasion, and migration by directly
targeting ZEB2 in gastric carcinoma. Annals of surgical
oncology. 2012;19:656-64.
36. Liu Z, Wang D, Hu Y, Zhou G, Zhu C, Yu Q, et al.
MicroRNA-146a negatively regulates PTGS2
expression induced by Helicobacter pylori in human
gastric epithelial cells. Journal of gastroenterology.
2013;48(1):86-92.
37. Xue X, Woldemariam NT, Caballero-Solares A,
Umasuthan N, Fast MD, Taylor RG, et al. Dietary
immunostimulant CpG modulates microRNA
biomarkers associated with immune responses in
Atlantic salmon (Salmo salar). Cells. 2019;8(12):1592.
38. Ordas A, Kanwal Z, Lindenberg V, Rougeot J, Mink M,
Spaink HP, et al. MicroRNA-146 function in the innate
immune transcriptome response of zebrafish embryos to
Salmonella typhimurium infection. BMC genomics.
2013;14(1):1-15.
39. Liyanage T, Nikapitiya C, Lee J, De Zoysa M. Potential
immune regulatory role of miR-146a upon Aeromonas
hydrophila and Edwardsiella piscicida infections in
zebrafish. Brazilian Journal of Microbiology.
2020;51(3):931.
40.Cao Y, Wang D, Li S, Zhao J, Xu L, Liu H, et al. A
transcriptome analysis focusing on splenic immunerelated mciroRNAs of rainbow trout upon Aeromonas
salmonicida subsp. salmonicida infection. Fish &
shellfish immunology. 2019;91:350-7.
41. Filipowicz W, Großhans H. The liver-specific
microRNA miR-122: biology and therapeutic potential.
Epigenetics and Disease. 2011:221-38.
42. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J,
Lendeckel W, Tuschl T. Identification of tissue-specific
microRNAs from mouse. Current biology : CB.
2002;12(9):735-9.
43. Wienholds E, Kloosterman WP, Miska E, AlvarezSaavedra E, Berezikov E, de Bruijn E, et al. MicroRNA
expression in zebrafish embryonic development.
Science (New York, NY). 2005;309(5732):310-1.
44. Ma H, Hostuttler M, Wei H, Rexroad III CE, Yao J.
Characterization of the rainbow trout egg microRNA
transcriptome. PLoS One. 2012;7(6):e39649.
45.Bizuayehu TT, Babiak I. MicroRNA in teleost fish.
Genome biology and evolution. 2014;6(8):1911-37.
46. Liu X, Hao Y, Peng L, Liu Y, Wei N, Liang Q. MiR122 is involved in immune response by regulating
Interleukin-15 in the orange-spotted grouper
(Epinephelus coioides). Fish & Shellfish Immunology.
2020;106:404-9.
47. Ambros V. The functions of animal microRNAs.
Nature. 2004;431(7006):350-5.
48. O'connell RM, Rao DS, Chaudhuri AA, Baltimore D.
Physiological and pathological roles for microRNAs in
the immune system. Nature Reviews Immunology.
2010;10(2):111-22.
49. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J,
Lendeckel W, Tuschl T. Identification of tissue-specific
microRNAs from mouse. Current biology.
2002;12(9):735-9.
50. Ding Z, Zhao X, Su L, Zhou F, Chen N, Wu J, et al. The
Megalobrama amblycephala transferrin and transferrin
receptor genes: Molecular cloning, characterization and
expression during early development and after
Aeromonas hydrophila infection. Developmental &
Sadeghi et al / Archives of Razi Institute, Vol. 78, No. 6 (2023) 1668-1679 1679
Comparative Immunology. 2015;49(2):290-7.
51.Cui L, Hu H, Wei W, Wang W, Liu H. Identification
and characterization of microRNAs in the liver of blunt
snout bream (Megalobrama amblycephala) infected by
Aeromonas hydrophila. International journal of
molecular sciences. 2016;17(12):1972.
52. Xu X, Shen Y, Fu J, Lu L, Li J. Next-generation
sequencing identified microRNAs that associate with
motile aeromonad septicemia in grass carp. Fish &
shellfish immunology. 2015;45(1):94-103.
53. Sharma S. Immunomodulation: A definitive role of
microRNA-142. Developmental & Comparative
Immunology. 2017;77:150-6.
54. Xu X-Y, Shen Y-B, Fu J-J, Yu H-Y, Huang W-J, Lu LQ, et al. MicroRNA-induced negative regulation of
TLR-5 in grass carp, Ctenopharyngodon idella.
Scientific reports. 2016;6:18595.
55. Shi L, Zheng X, Fan Y, Yang X, Li A, Qian J. The
contribution of miR-122 to the innate immunity by
regulating toll-like receptor 4 in hepatoma cells. BMC
gastroenterology. 2019;19:1-9.
56. Tao L, Pang Y, Wang A, Li L, Shen Y, Xu X, et al.
Functional miR-142a-3p Induces Apoptosis and
Macrophage Polarization by Targeting tnfaip2 and glut3
in Grass Carp (Ctenopharyngodon idella). Frontiers in
Immunology. 2021;12:2481.
57.Chen L, Li Q, Su J, Yang C, Li Y, Rao Y. Trunk kidney
of grass carp (Ctenopharyngodon idella) mediates
immune responses against GCRV and viral/bacterial
PAMPs in vivo and in vitro. Fish & shellfish
immunology. 2013;34(3):909-19.
58. Xie Y, Wang B. Downregulation of TNFAIP2
suppresses proliferation and metastasis in esophageal
squamous cell carcinoma through activation of the
Wnt/β-catenin signaling pathway. Oncology reports.
2017;37(5):2920-8.
59.Biswas R, Mondal A, Ahn J-C. Deregulation of
EGFR/PI3K and activation of PTEN by photodynamic
therapy combined with carboplatin in human anaplastic
thyroid cancer cells and xenograft tumors in nude mice.
Journal of Photochemistry and Photobiology B:
Biology. 2015;148:118-27.