Bioinformatics Analysis of Upstream Region and Protein Structure of Fungal Phytase Gene

Document Type: Short Communication

Authors

1 Department of Animal Sciences, Faculty of Animal and Food Sciences, Khuzestan Ramin Agriculture and Natural Resources University, Mollasani, Ahvaz, Iran

2 Department of Genetics, Faculty of Animal Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

3 Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

4 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Phytase increases the bioavailability of phytate phosphorus in seed-based animal feeds and reduces the phosphorus pollution of animal waste. Since most animal feeds for pellets are heated up to 65-80 °C, the production of a thermostable structure for phytase can be useful. In this study, we sought to perform bioinformatics analysis of the upstream region and protein structure of fungal phytase to improve its expression and thermostability properties. We used bioinformatics methods such as similarity search, multiple alignment, statistical analysis of physicochemical properties of amino acids, pattern recognition, and protein modeling to find out the effective factors in heat resistance of phytase. Change in Gibbs free energy (ΔG) of the best pattern promoter resulting from the interaction between RNA polymerase and the promoter sequences of modified genes of phytase was equal to -9 kcalmol-1, which is lower compared to other interactions. The evaluation of the three-dimensional structure of new phytases showed that amino acid substitutions aimed at improving thermostability did not change the form and structure of the protein. The results of Prochek, Whatcheck, and ERRAT for structural analysis and verification were 84, 72, and 70, respectively, that were satisfactory.

Keywords


Article Title [French]

Analyse Bio-informatique de la Région en Amont du Gène de Phytase Fongique Ainsi que de sa Structure Protéique

Abstract [French]

La phytase augmente la biodisponibilité du phytate phosphore dans les graines dédiées à l’alimentation animale et réduit la pollution au phosphore des déchets animaliers. Étant donné que la plupart des aliments pour animaux destinés à la production de granulés sont chauffés à 65-80 °C, la production d'une structure thermostable pour la phytase peut être utile. Notre étude avait pour objectif l’analyse bioinformatique de la région en amont du gène de la phytase fongique ainsi que la sturucture de la protéine codée, afin d'améliorer ses propriétés d'expression et de thermostabilité. A cet effet, des méthodes bio-informatiques telles que la recherche de similarité, l'alignement multiple, l'analyse statistique des propriétés physicochimiques des acides aminés, la reconnaissance des formes et la modélisation des protéines pour déterminer les facteurs de résistance à la chaleur de la phytase ont été utilisées. La modification (ΔG) dans l'énergie libre de Gibbs du meilleur promoteur de modèle résultant de l'interaction entre l'ARN polymérase et les séquences promotrices de gènes modifiés de la phytase était égal à -9 kcalmol-1, ce qui est inférieur aux autres connexions. L’évaluation de la structure tridimensionnelle de nouvelles phytases a montré que les substitutions d’acides aminés visant à améliorer la thermostabilité n’ont pas modifié la forme et la structure de la protéine. Les résultats obtenus par Prochek, Whatcheck et ERRAT pour l’analyse structurelle étaient satisfaisants et la vérification était respectivement de 84, 72 et 70.

Keywords [French]

  • Phytase Fongique
  • Bio-Informatique
  • Modélisation Homologique
  • Amarrage Moléculaire
  • Analyse des Régions en Amont
Abreu, E.F., Aragão, F.J., 2007. Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress. Ann Bot 99, 285-292.

Antequera, F., 2003. Structure, function and evolution of CpG island promoters. CMLS 60, 1647-1658.

Berka, R.M., Rey, M.W., Brown, K.M., Byun, T., Klotz, A.V., 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64, 4423-4427.

Bischof, J.C., He, X., 2006. Thermal stability of proteins. Ann N Y Acad Sci 1066, 12-33.

Blundell, T., Elliott, G., Gardner, S., Hubbard, T., Islam, S., Johnson, M., et al., 1989. Protein engineering and design. Philosophical Transactions of the Royal Society of London B: Biological Sciences 324, 447-460.

Boder, E.T., 2012. Protein engineering: tighter ties that bind. Nature 484, 463-464.

Bortoluzzi, S., Coppe, A., Bisognin, A., Pizzi, C., Danieli, G.A., 2005. A multistep bioinformatic approach detects putative regulatory elements in gene promoters. BMC bioinformatics 6, 121.

Brewster, R.C., Jones, D.L., Phillips, R., 2012. Tuning promoter strength through RNA polymerase binding site design in Escherichia coli. PLoS Comput Biol 8, e1002811.

Cao, Y., Jiao, R., Xia, Y., 2012. A strong promoter, PMagpd, provides a tool for high gene expression in entomopathogenic fungus, Metarhizium acridum. J Biotechnol Lett 34, 557-562.

Corrêa, T.L.R., de Queiroz, M.V., de Araújo, E.F., 2015. Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum. J Microbiol Res 170, 205-212.

Deaton, A.M., Bird, A., 2011. CpG islands and the regulation of transcription. Genes Dev 25, 1010-1022.

Deschênes, A., Sourial, E., 2007. Ligand Scaffold Replacement using MOE Pharmacophore Tools. J. Chem. Comp. Group.

D'haeseleer, P., 2006. What are DNA sequence motifs? Nature biotechnology 24, 423-425.

Emanuelsson, O., Brunak, S., Von Heijne, G., Nielsen, H., 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nature protocols 2, 953-971.

Finn, RD., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J., Chang, H.Y and et al., 2017. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. Vol 4;45(D1):D190-D199. PubMed PMID: 27899635

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D., et al., 2005. Protein identification and analysis tools on the ExPASy server, Springer.

Gupta, A., Gandhimathi, A., Sharma, P., Jayaram, B., 2007. ParDOCK: An all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Pept Lett 14, 632-646.

Hackenberg, M., Barturen, G., Carpena, P., Luque-Escamilla, PL., Previti, C., Oliver, JL., 2010. Prediction of CpG-island function: CpG clustering vs. sliding-window methods. BMC Genomics. Vol 26;11:327. doi: 10.1186/1471-2164-11-327. PubMed PMID:20500903.

Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., Zelder, O., 2005. Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol 68, 588-597.

Hemmerich, J., Rohe, P., Kleine, B., Jurischka, S., Wiechert, W., Freudl, R., Oldiges, M., 2016. Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum. Microb Cell Fact. Vol 7;15(1):208. PubMed PMID: 27927208; PubMed Central PMCID: PMC5142396.

Hendrix, DA., Hong, J.W., Zeitlinger, J., Rokhsar, D.S., Levine, M.S., 2016. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc Natl Acad Sci U S A. Vol 3;105(22):7762-7.

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., et al., 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240.

King, D.C., Taylor, J., Zhang, Y., Cheng, Y., Lawson, H.A., Martin, J., et al., 2007. Finding cis-regulatory elements using comparative genomics: some lessons from ENCODE data. Genome Res 17, 775-786.

Konga, S.L., Abdullaha, S.N.A., Hoc, C.L., Amiruddind, M.D., 2016. Molecular cloning, gene expression profiling and in silico sequence analysis of vitamin E biosynthetic genes from the oil palm. J Plan Gene 5, 100–108.

Lim, Young-Yi., Eun-Ha, Park., Ji-Hye, Kim., Seung-Moon, Park., Hyo-Sang, Jang., Youn-Je, Park., Sewang, Yoon., Moon-Sik, Yang., Dae-Hyuk, Kim., 2001. Enhanced and Targeted Expression of Fungal Phytase in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology. 11, 915-92.

Lin, H., Chen, W., 2011. Prediction of thermophilic proteins using feature selection technique. J Microbiol Methods 84, 67-70.

Liu, F., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D., et al., 2015. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 313.

Liu, Wan. Jing, Lv, Hai. zhou., He, Liu., Song, Jing.yuan., Sun, Chao., Luo, Hong.mei., Chen, Shi.lin., 2016. Cloning and Bioinformatic Analysis of HMGS and HMGR Genes from Panax notoginseng. J Chinese Herb Med 8, 344-351.

Lis, M., Walther, D., 2016. The orientation of transcription factor binding site motifs in gene promoter regions: does it matter?. BMC Genomics 17, 310.

Lum, G., Min, X.J., 2011. FunSecKB: the fungal secretome knowledgebase. Database 2011, bar001.

Lum, G., Min, X.J., 2011. FunSecKB: the fungal secretome knowledgebase. Database 2011, bar001.

Marlida, Y., Delfita, R., Adnadi, P., Ciptaan, G., 2010. Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9, 471-474.

Marr, M.T., Roberts, J.W., Brown, S.E., Klee, M., Gussin, G.N., 2004. Interactions among CII protein, RNA polymerase and the λ PRE promoter: contacts between RNA polymerase and the–35 region of PRE are identical in the presence and absence of CII protein. Nucleic Acids Res 32, 1083-1090.

Minetoki, T., Tsuboi, H., Koda, A., Ozeki, K., 2003. Development of high expression system with the improved promoter using the cis-acting element in Aspergillus species. J Biol Macromol 3, 89-96.

Mudge, S.R., Smith, F.W., Richardson, A.E., 2003. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. J Plant Sci 165, 871-878.

Mullaney, E.J., Locovare, H., Sethumadhavan, K., Boone, S., Lei, X.G., Ullah, A.H., 2010. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Appl Microbiol Biotechnol 87, 1367-1372.

Ohler, U., Niemann, H., 2001. Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet 17, 56-60.

Pagni, M., Ioannidis, V., Cerutti, L., Zahn-Zabal, M., Jongeneel, C.V., Hau, J., et al., 2007. MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35, W433-W437.

Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8, 785-786.

Pontius, J., Richelle, J., Wodak, S.J., 1996. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264, 121-136.

Promdonkoy, P., Tang, K., Sornlake, W., Harnpicharnchai, P., Kobayashi, RS., Ruanglek, V., Upathanpreecha, T., Vesaratchavest, M., Eurwilaichitr, L., Tanapongpipat, S., 2008. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett 290, 18-24.

Sarda, S., Das, A., Vinson, C., Hannenhalli, S., 2017. Distal CpG islands can serve as alternative promoters to transcribe genes with silenced proximal promoters. Genome Res 27, 553-566.

Setny, P., Bahadur, R.P., Zacharias, M., 2012. Protein-DNA docking with a coarse-grained force field. BMC bioinformatics 13, 228.

Shahmuradov, I.A., Solovyev, V.V., 2015. Nsite, NsiteH and NsiteM computer tools for studying transcription regulatory elements. Bioinformatics 31, 3544-5.

Shaikh, S.A., Jayaram, B., 2007. A Swift All-Atom Energy-Based Computational Protocol to Predict DNA− Ligand Binding Affinity and Δ T m. J Med Chem 50, 2240-2244.

Sharif, J., Endo, T.A., Toyoda, T., Koseki, H., 2010. Divergence of CpG island promoters: a consequence or cause of evolution? Dev Growth Differ 52, 545-554.

Teng, S., Srivastava, A.K., Wang, L., 2010. Sequence feature-based prediction of protein stability changes upon amino acid substitutions. BMC Genet 11, S5.

Tran, T.T., Mamo, G., Mattiasson, B., Hatti-Kaul, R. A., 2010.  Thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. J Ind Microbiol Biotechnol 37, 279-87.

Wasserman, W.W., Sandelin, A., 2004. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5, 276-287.

Yao, M.Z., Zhang, Y.H., Lu, W.L., Hu, M.Q., Wang, W., Liang, A.H., 2012. Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112, 1-14.