Identification and isolation of immunodominant proteins of Naja naja (Oxiana) snake venom

Document Type: Original Articles


1 Department of Biochemistry, Faculty of Science, Payame Noor University, Tehran, Iran

2 Proteomics and Biochemistry Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 Department of Microbiology, School of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran


Snake venom is a complex mixture of proteins, peptides, enzymes, carbohydrates, and minerals. They contain a variety of chemicals with pharmacological and toxicological properties. The innate immune system is the first line of defense against toxins and microbes. Antibacterial and anticancer proteins produced by snake venom have recently attracted significant attention due to their relevance to bacterial diseases and the potential of being converted into new therapeutic agents. However, the production of anti-snake venom from large mammals is proven to be low-yielding and arduous. The aim of the present study was to investigate and isolate immunodominant proteins of Naja oxiana snake venom. Identification was performed by 15%  sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Subsequently, four sharp protein bonds of 14, 22, 32, 65 kDa were appeared in nitrocellulose paper. In the next step, the identified proteins were isolated directly by electro-elution from preparative gel electrophoresis. Results showed that immunodominant proteins of (14, 22, 32, and 65 kDa) with high immunogenicity had high immunoreactivity with antiserum. To the best our knowledge, these proteins can be candidates for preparing a specific anti-venom against Naja oxiana and antimicrobial immunodominant proteins, as well as designing antimicrobial peptides.


Main Subjects

Article Title [French]

Identification et isolation des protéines immunodominantes de Naja naja (Oxiana) venin de serpent

Abstract [French]

Le venin de serpent est un mélange complexe de protéines, peptides, enzymes, hydrates de carbone et les minéraux. Ils contiennent une variété de produits chimiques ayant des propriétés pharmacologiques et toxicologiques. Le système immunitaire inné est la première ligne de défense contre les toxines et les microbes. Les protéines antibactériennes et anticancéreuses produites par le venin de serpent ont récemment attiré une attention particulière en raison de leur rapport avec les maladies bactériennes et du potentiel de conversion en de nouveaux agents thérapeutiques. Cependant la production de venin anti-serpent des grands mammifères s'est révélée de faible rendement et ardu. L'objectif de la présente étude était d'étudier et d'isoler les protéines immunodominantes du venin de serpent Naja oxiana. L'identification a été effectuée par 15% électrophorèse sur gel de polyacrylamide de dodécyl sulfate de sodium (SDS-PAGE) et analyse de Western Blot. Par la suite, quatre liaisons protéiques nettes de 14, 22, 32 et 65 kDa sont apparues dans du papier de nitrocellulose. Dans l'étape suivante, les protéines identifiées ont été isolées directement par électro-élution à partir d'une électrophorèse en gel préparatoire. Les résultats ont montré que les protéines immunodominantes de14, 22, 32 et 65 kDa ayant une immunogénicité élevée avaient une immunoréactivité élevée avec un antisérum. Au mieux de notre connaissance, ces protéines peuvent être candidates à la préparation d'un anti venin spécifique contre Naja oxiana et des protéines immunodominantes antimicrobiennes, ainsi qu'à la conception de peptides antimicrobiens.

Keywords [French]

  • Naja Naja
  • Protéine immunodominante
  • Antivenom
  • Electro-élution

Barker, R.A., Ratcliffe, E., Mclaughlin, M., Richards, A., Dunnett, S.B., 2000. A role for complement in the rejection of porcine ventral mesencephalic xenografts in a rat model of Parkinson's disease. J Neurosci 20, 3415-3424.

Barlow, A., Pook, C.E., Harrison, R.A., Wüster, W., 2009. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings of the Royal Society of London B: Biological Sciences 276, 2443-2449.

Binz, P.A., Abdi, F., Affolter, M., Allard, L., Barblan, J., Bhardwaj, S., 2003. Proteomics application exercise of the Swiss Proteomics Society: report of the SPS'02 session. Proteomics 3, 1562-1566.

Chippaux, J.P., 1998. Snake-bites: appraisal of the global situation. Bulletin of the World Health organization 76, 515.

Deshpande, S.S., 2012. Enzyme immunoassays: from concept to product development, Springer Science & Business Media.

Dunn, G.P., Old, L.J., Schreiber, R.D., 2004. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137-148.

Guan, H.H., Goh, K.S., Davamani, F., Wu, P.L., Huang, Y.W., Jeyakanthan, J., et al., 2010. Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. J Structure Biol 169, 294-303.

Gutiérrez, J.M., Lomonte, B., León, G., Alape-Girón, A., Flores-Díaz, M., Sanz, L., et al., 2009. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteom 72, 165-182.

Hati, R., Mitra, P., Sarker, S., Bhattacharyya, K.K., 1999. Snake venom hemorrhagins. Critic Rev Toxicol 29, 1-19.

Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., et al., 2015. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteom 128, 92-104.

Kini, R.M., Evans, H.J., 1990. Effects of snake venom proteins on blood platelets. Toxicon 28, 1387-1422.

Laustsen, A.H., Gutiérrez, J.M., Lohse, B., Rasmussen, A.R., Fernández, J., Milbo, C., et al., 2015. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon 99, 23-35.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. J biol Chem 193, 265-275.

Nawarak, J., Sinchaikul, S., Wu, C.Y., Liau, M.Y., Phutrakul, S., Chen, S.T., 2003. Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis 24, 2838-2854.

Oliveira, D.G., Toyama, M.H., Novello, J.C., Beriam, L.O.S., Marangoni, S., 2002. Structural and functional characterization of basic PLA2 isolated from Crotalus durissus terrificus venom. J Protein Chem 21, 161-168.

Petras, D., Sanz, L., Segura, Á., Herrera, M., Villalta, M., Solano, D., et al., 2011. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 10, 1266-1280.

Rioux, V., Gerbod, M.C., Bouet, F., Ménez, A., Galat, A., 1998. Divergent and common groups of proteins in glands of venomous snakes. Electrophoresis 19, 788-796.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676-682.

Tan, K.Y., Tan, C.H., Fung, S.Y., Tan, N.H., 2015. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteom 120, 105-125.

Theakston, R., Reid, H., 1983. Development of simple standard assay procedures for the characterization of snake venoms. Bulletin of the World Health Organization 61, 949.

Tong, Q., Wang, F., Zhou, H.Z., Sun, H.L., Song, H., Shu, Y.Y., 2012. Structural and functional insights into lipid-bound nerve growth factors. FASEB J 26, 3811-3821.

Walker, J.M., 2002. Nondenaturing polyacrylamide gel electrophoresis of proteins. Protein Protocols Handbook, 57-60.

Wei, J.F., Li, T., Wei, X.L., Sun, Q.Y., Yang, F.M., Chen, Q.Y., 2006. Purification, characterization and cytokine release function of a novel Arg-49 phospholipase A 2 from the venom of Protobothrops mucrosquamatus. Biochimie 88, 1331-1342.

Yang, C.C., 1996. Structure and function of cobra neurotoxin. Natural Toxins 2, Springer, pp. 85-96.

Zhong, S.R., Jin, Y., Wu, J.B., Chen, R.Q., Jia, Y.H., Wang, W.Y., et al., 2006. Characterization and molecular cloning of dabocetin, a potent antiplatelet C-type lectin-like protein from Daboia russellii siamensis venom. Toxicon 47, 104-112.