CARBOXYPEPTIDASEY FROM SACCHAROMYCES CEREVISIAE CONFORMATIONAL DIFFERENCES REFLECTED IN KINETIC BEHAVIOUR IN WATER AND DEUTERIUM OXIDE

Yasushi Nakagawa , Javad Ghotb-Sharif and Kenneth T. Douglas

Abstract

The glycoenzyme carboxypeptidase Y (peptidyl-amino-acid hydrolase, EC 3.4.16.1), from baker's yeast (British Fermentation Products Strain, Ng 72), of motecular weight 60,000, and a protion closely similar to those in the literature for carboxypeptidace Y isolations from other yeast sources, but was 24.3 wt% ca bohydrate (mannose 83% by wt. with traces of galactose and gala osamine). Circular dichroic spectra indicated that the enzyme lost its β - structure as the pH was lowered from 8.08 to 4.16. At p^2H 8.22 in 2H_2O media the conformation of this enzyme was different from that observed at pH 8.08. A tyrosine residue appeared to be perturbed by lowering the pH of the medium. Carboxypeptidase Y was rapidly, and essentially irreversibly, inactivated at low p²H. The pH profile of keat for the carboxypeptidase Y-catalysed hydrolysis of 4-nitrophenyltrimethylacetate showed two inflections at 45° C: one at pK_{app} ~ 3.7 insensitive to temperature variation (ascribed) to a carboxyl group), and one of $pK_{app} \sim 5.7$ markedly temperaturedependent and possibly caused by a histidine residue.

Reprinted from: Biochimica et Biophysica Acta, 706 (1982) 141 – 143 Elsevier — Biomedical Press

In the yeast life-cycle, protease action has been implicated in cellbudding [1], ascospore formation [2], tryptophan synthesis [3], as well as in the modification of several other enzyme activities [4]. Carboxypeptidase Y (EC 3.4.16.1) from yeast, useful in protein sequencing and related studies [5-7], is an intracellular protease. a group of enzymes into which mechanistic insight is sadly lacking.

For carboxypeptidase Y from Japanese yeast, the inhibition by Lphenylalanine changes on going from H₂O to ²H₂O media in studies with Nacetyl -L-phenylalanyl ethyl ester [9]. We have suggested that the conformation or active-site configuration of carboxypeptidase Y differs from H₂O to ²H₂O [8].

Carboxypeptidase Y (spec. act. > 100) was prepared from British Fermentation Products (strain Ng 72) compressed baker's yeast by affinity chromatography, [11] followed by G-75 gel filtration. Approximate enzyme concentrations were estimated by using $A_{280}^{1\%}$ =15 and a molecular weight of 61000 [10, 12]. Accurate functional enzyme concentrations were determined by active-site titration [10]. Activity measurements and kinetic procedures [8,14] and amino acid and carbohydrate analyses were effected as described [10, 13]. The carboxypeptidase Y preparation was homogeneous by SDS-polyacrylamide gel electrophoresis with molecular weight 60 000 and 55 000 on separate occasions with different preparations. Homogeneity was also indicated by the sedimentation velocity experiment with sedimentation coefficient 3.98 S in 0.01 M phosphate buffer. Values of $s_{20}^0 = 4.41$ S for the enzyme from Danish yeast [11] and s_{20}^0 w = 4.3 S for that from Japanese yeast [12] have been reported. The carbohydrate content was 25.3 wt%; the molecular weight of the carbohydrate protion was 15.18. 10^3 based on molecular weight of the enzyme as 60. 10^3 . Small amounts of galactosamine (0.1%), galactose (0.8%) and glucose (0.6%) were found in addition to mannose (21.2%) and glucosamine (2.6%). Mannose accounted for 83.8% by weight of the total hexoses, an glucosamine 10.3%. Amino acid compositions were similar to those previously reported [10]. The total number of residues calculated was 382 (cysteine and tryptophan not determined) and the estimated molecular weight was 41.10³ for the protein portion.

CD spectra of carboxypeptidase Y in H2O and ²H2O at corresponding pH and p²H values showed significant differences. In the nearultraviolet region, pH (or p²H)-dependent perturbation of side-chain conformation was observed (Figs. 1 and 2), with the degree of perturbtion greater in ²H2O than H2O. Values of [θ] (280–300nm) at p²H 8.22 were positive (+10 to +15 deg. cm². dmol⁻¹), but became negative as the p²H was decreased. At p²H 4.13 a negative trough around 290– 300 nm became significant, which may indicate perturbation of tryptophan (s). The negative band at 280 nm may be caused by perturbation of tyrosine(s). At pH 4.16 such perturbations were considerably less marked.

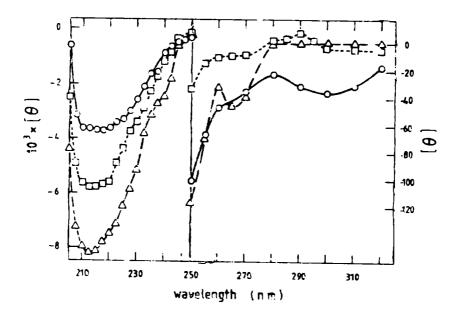


Fig. 1. Dependance on pH of CD spectra for carboxypeptidase Y in ${}^{1}\text{H}_{2}\text{O}$ media; conditions described in text. CD spectra were measured using a Cary 60 spectropolarimeter with a 6001 CD accessory. Fused quartz cells with 10 mm (250 to 300 nm) and 1 mm (200 to 250 nm) pathlength were used. Mean residue ellipitcity. [0], was calculated using a mean reiduce weight of 107 for the enzyme. Average dichroic absorbarces were determined from triplicate recordings. O, pH 4.16; pH 6.90; , pH 8.08.

In the far-ultraviolet region the effects in ²H₂O were more pronounced than in H₂O. In H₂O media at pH 8.08 or 6.90 the enzyme showed β -structure, but lost its structure and became more disordered at pH 4.16. In ²H₂O media the enzyme was considerably disordered even at p²H 8.22; the degree of disorder increased as the p²H decreased further. Comparing pH 8.08 and p²H 8.22, the enzyme is less ordered in the ²H₂O medium.

The activity pH profile in H2O of British enzyme (Fig. 3) is similar to that in ²H2O of Anheuser-Busch enzyme [8]. The ionisation at lower PH for British enzyme had $pK_{\bullet PP} \sim 3.7$, at both 25 and 45^oC, and the enzyme, once subjected to treatment with low pH buffer, even in the presence of substrate, is mactivated essentially irreversibly. Thus

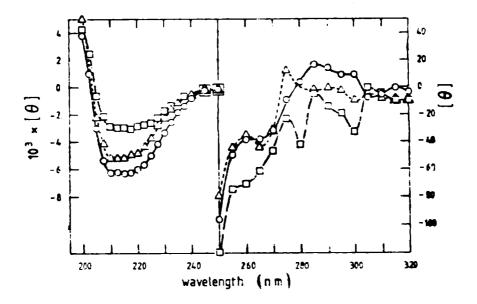


Fig. 2. Dependance on p^2H of CD spectra for carboxypeptidase Y in ${}^{2}H_{2}O$ media , $p^{2}H$ 4.13; , $p^{2}H$ 6.87; O, $p^{2}H$ 8.22.

the mactivation (pK_{app} 3.7) in H2O for the British enzyme is analogous to that observed for the Anheuser-Busch enzyme in ²H2O [8]. However, the British enzyme loses activity very rapidly at lower pH. For peptide sequencing studies using carboxypeptidase Y from British yeast acidic conditions must be avoided. The temperature insensitivity [15] of the group of pK_{app} ~ 3.7 controlling the inactivation process suggests that it might be a carboxyl group.

The group of higher $pK_{\bullet PP}$ is possibly involved in the catalytic mechanism, either directly by being situated close to the active site, or through control of the active-site configuration. The pKapp value appears to increase from 5.7 at 45°C to more than 7 at 25°C, implying that Δ Hionisation is positive. The positive value of Δ Hionisation and pKapp range of $5.7 \rightarrow 7$ leads us to suggest tentatively a histidine residue. As the pH is dropped to 4 much of the β -structure of the British enzyme is lost, a feature presumably reflected in the rapid deactivation of the enzyme at lower pH values. More remarkable, perhaps, is the fact that the enzyme β -structure is strongly disordered at p2H α . This difference in secondary structures at pHs and p^2 H8 would explain the observations of Bai et al. [9], who reported that inhibition kinetics of Lphenylalanine versus N-acetyl-L-phenylalanyl ethylester as substrate changed from competitive in H₂O at pH 6.5 to non-competitive in ²H₂O (p²H 7.0). The CD results on the British enzyme directly support the view of a conformational difference between ²H₂O and H₂O.

We are grateful to British Fermentation Products (Felixstowe, Suffolk, U.K.) for generous supplies of the yeast (Ng 72) and to Mr. John Kent for technical assistance with ultracentrifugation.

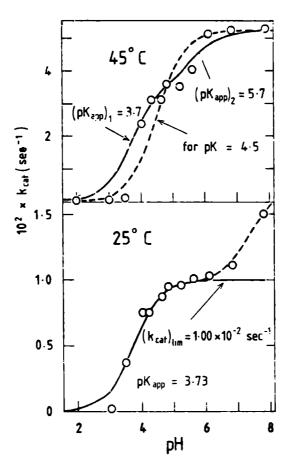


Fig. 3. Profiles of Ph dependences of K_{cat} at 45 and 25°C for the carboxypeptidase Y - catalyzed hydrolysis of 4 - nitrophenyltrimethy - lacetate in aqyeous (${}^{1}H_{2}O$) media. For the 45°C figure (upper) the points are experimental and the solid line is theotrtical for two indendent ionisations of pK_{app} 3.7 and 5.7, respectively, for the kinetic scheme

$$\mathbf{EH}_{2} \stackrel{K_{1}}{=} \mathbf{EH}^{-} \stackrel{K_{2}}{=} \mathbf{E}^{=}$$

$$\mathbf{k}_{1} \downarrow \qquad \downarrow \mathbf{k}_{2}$$

where $K_1 = 3.6.10^{-2} \text{ s}^{-1}$ and $k/2 = 5.2.10^{-2} \text{ s}^{-1}$. For comparison the dotted the line describes a single ionisation of pK = 4.5 with a limiting value of $K_{eat} = 5.2.10^{-2} \text{ s}^{-1}$. The lower figure represents the same reaction as described above, but at 25°C. The points are experimental and the solid line is theoretical for an ionisation of $pK_{app} = 3.73$ with a limiting value of $K_{cat} = 1.00.10^{-2} \text{ s}^{-1}$. The dotted line is notional to assist visualisation thath the higher pH values.

Reference

- 1. Cabib. E. and Farkas, V. (1971) Proc. Natl. Acad. Sci U.S.A. 68, 2052-2056.
- 2. Betz, H. and Weiser, U. (1976) Eur. J. Biochem, 62. 65-76
- 3. Saheki, T. and Holzer. H. (1974) Eur. J. Biochem. 42, 621-626
- 4. Juni, E. and Heym, G.A. (1968) Arch. Biochem. Biophys. 127, 89– 100
- 5. Hyashi, R. (1977) Methods Enzymol. 47, Part E, 34-93
- 6. Liberatore, F.A., Mclsaac, J.E. and Royer, G.P. (1976) FEBS Lett. 68, 45-48.
- 7. Martin, B., Svendsen, I. and Ottesen, M. (1977) Carlsberg Res. Commun. 42, 99-102
- 8. Chang, W.T. and Douglas K.T. (1980) Biochem. J. 187, 843-849
- 9. Bai, Y., Hayashi, R. and Hata, T. (1975) J. Biochem. (Tokyo) 78, 617-626
- 10. Margolis, H.C., Nakagawa, Y., Douglas, K.T. and Kaiser, E.T. (1978)
- Johansen, J.T., Breddam, K. and Ottesen, M. (1976) Carlsberg Res. Commun. 41, 1-15
- 12. Aibara, S., Hayashl, R. and Hata, T. (1971) Agric. Biol. Chem. 35, 628-666.
- 13 Clamp, J.R., Bhatti, T. and Chambers, R.E. (1971) Methods Biochem. Anal. 19, 229-344.
- Douglas, K. T. Nakagawa, Y. and Kaiser, B.T. (1976) J. Am. Chem. Soc. 98. 8231-8236.
- 15. Dixon, M. and Webb. E.C. (1964) Enzymes, 2nd Edn., Ch. 4 Academic Press, New York.