Histopathological changes and biochemical analysis of sulfadiazine injected in egg in chicken embryo pectoral muscles

Document Type: Original Articles

Authors

1 Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran,Iran

2 Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran

3 Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran

Abstract

This study aimed to investigate the effects of different doses of sulfadiazine on embryonic chicken pectoral muscles. In total, 100 fertile eggs were obtained and divided into five groups of control (no injection) and sulfadiazine injection at doses of 2, 10, 30, and 70 mg/kg. After hatching, pectoral muscle tissues were harvested from the newly hatched chickens for histopathological examination and measurement of oxidative stress parameters. Microscopic examination of pectoral muscle samples indicated that sulfadiazine administration changed the histopathological structure of chicken pectoral muscles only at very high doses (30 and 70 mg/kg). Major histopathologic events associated with sulfadiazine cytotoxicity were multifocal degeneration, necrotic tissue changes, and inflammatory cell infiltration (predominantly mononuclear cells) around degenerated and necrotic muscle fibers. Moreover, sulfadiazine at doses of 10, 30 and 70 mg/kg increased malondialdehyde level and decreased glutathione, ferric reducing antioxidant power, and total carotenoid, which indicated oxidative damage in broiler skeletal muscles. Therefore, it could be concluded that in-egg administration of up to 10 mg/kg of sulfadiazine is safe for chicken embryo, whereas dosage of 30 mg/kg (or above) is considered highly toxic.

Keywords

Main Subjects


Article Title [French]

Analyses biochimiques et histopathologiques des changements induits par l’injection de sulfadiazine dans le muscle pectoral embryonnaire d’un œuf de poulet

Abstract [French]

L’objectif de cette étude était l’étude des effets générés par l’injection de différentes doses de sulfadiazine dans le muscle pectoral embryonnaire de poulet. Au total, 100 œufs fertiles ont été collectés et répartis dans 5 groupes comprenant un groupe de contrôle (sans injection) et 4 groupes pour les injections de sulfadiazine à 2, 10, 30, et 70 mg/kg. Après éclosion, les tissus du muscle pectoral des poussins ont été prélevés et soumis à des examens d’histopathologies et de mesure des paramètres de stress oxydatif. Les observations microscopiques des prélèvements de muscle pectoral ont révélé des changements dans leurs structures histologiques suite à l’administration de sulfadiazine à très fortes doses (30 et 70 mg/kg). Les effets cytotoxiques majeurs du sulfadiazine comprenaient une dégénération multifocale, des changements dans les tissus nécrotiques et l’infiltration de cellules inflammatoires (particulièrement de cellules mononuclées) au niveau des fibres musculaires dégénérés et nécrotiques. De plus, les doses de sulfadiazine de 10, 30 et 70 mg/kg provoquaient une augmentation du taux de malondialdéhyde ainsi qu’une diminution du glutathionne, du FRAP (ferric reducing antioxydant power) et du taux de caroténoïde total, signe de dommages oxydatifs au niveau des muscles squelettiques des poulets étudiés. En conclusion, l’administration dans l’œuf de jusqu’à 10 mg/kg de sulfadiazine n’entraine pas de risques pour l’embryon du poulet alors que les doses de plus de 30 mg/kg se sont avérées être fortement toxiques.

Keywords [French]

  • Toxicité du Sulfadiazine
  • Muscle pectoral
  • Embryon de poulet

Accinelli, C., Koskinen, W.C., Becker, J.M., Sadowsky, M.J., 2007. Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem 55, 2677-2682.

Archile-Contreras, A.C., Purslow, P.P., 2011. Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Research International 44, 582-588.

Baran, W., Sochacka, J., Wardas, W., 2006. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65, 1295-1299.

Barragry, T.B., 1994. Aminoglycosides, macrolides, and lincosamides. In: Veterinary Drug Therapy, Williams & Wilkins, Philadelphia, USA.

Bass, A.D., Yntema, C.L., Hammond, W.S., Frazer, M.L., 1951. Studies on the mechanism by which sulfadiazine affects the survival of the mammalian embryo. J Pharmacol Exp Ther 101, 362-367.

Booth, N.H., 1973. Development of a regulatory research program in Veterinary medical toxicology. J Vet Toxicol 15, 100-100.

Casella, I.G., Contursi, M., Gioia, D., 2012. Development of a Liquid Chromatography/Amperometric Detection Method for the Determination of Multiresidue Sulfonamide Antibiotics in Meat-Based Baby Foods. Electroanalysis 24, 2125-2133.

Cheong, C.K., Hajeb, P., Jinap, S., Ismail-Fitry, M.R., 2010. Sulfonamides determination in chicken meat products from Malaysia. Int Food Res J 17, 885-892.

Collins, B.K., Moore, C.P., Hagee, J.H., 1986. Sulfonamide-associated keratoconjunctivitis sicca and corneal ulceration in a dysuric dog. J Am Vet Med Assoc 189, 924-926.

Czauderna, M., Kowalczyk, J., Marounek, M., 2011. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 879, 2251-2258.

Daft, B.M., Bickford, A.A., Hammarlund, M.A., 1989. Experimental and field sulfaquinoxaline toxicosis in Leghorn chickens. Avian Dis 33, 30-34.

Del Rio, D., Stewart, A.J., Pellegrini, N., 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15, 316-328.

Devasagayam, T.P., Tilak, J.C., Boloor, K.K., Sane, K.S., Ghaskadbi, S.S., Lele, R.D., 2004. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52, 794-804.

Fischer, L.J., Thulin, A.J., Zabik, M.E., Booren, A.M., Poppenga, R.H., Chapman, K.J., 1992. Sulfamethazine and its metabolites in pork: effects of cooking and gastrointestinal absorption of residues. Journal of Agricultural and Food Chemistry 40, 1677-1682.

Gibson, X.A., Shartava, A., McIntyre, J., Monteiro, C.A., Zhang, Y., Shah, A., Campbell, N.F., Goodman, S.R., 1998. The efficacy of reducing agents or antioxidants in blocking the formation of dense cells and irreversibly sickled cells in vitro. Blood 91, 4373-4378.

Guzik, T.J., West, N.E., Pillai, R., Taggart, D.P., Channon, K.M., 2002. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension 39, 1088-1094.

Halliwell, B., Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. The American Journal of Medicine 91, S14-S22.

Islam, M.K., Akter, S., Bala, S., Z., H.M., Akter, M.S., 2012. Investigation on the counteracting effect of spirulina against potentated sulfonamides (COTRIM DS) side effects in rat. Bangladesh J Vet Med 10, 81-86.

Kato, T., Kitagawa, S., 1974. Effects of a new antibacterial sulfonamide (CS-61) on mouse and rat fetuses. Toxicology and Applied Pharmacology 27, 20-27.

Lebkowska-Wieruszewska, B.I., Kowalski, C.J., 2010. Sulfachlorpyrazine residues depletion in turkey edible tissues. J Vet Pharmacol Ther 33, 389-395.

Lee, C.Y., Lee, B.D., Na, J.C., An, G., 2010. Carotenoid Accumulation and Their Antioxidant Activity in Spent Laying Hens as Affected by Polarity and Feeding Period. Asian Australas. J. Anim. Sci 23, 799-805.

Liman, B.C., Kanbur, M., Eraslan, G., Baydan, E., Dinç, E., Karabacak, M., 2015. Effects of various freezing and cooking processes on the residues of sulfamethazine in broiler tissues. Ankara Uni Vet Fakültesi Dergisi 62, 6-13.

Littlefield, N.A., Sheldon, W.G., Allen, R., Gaylor, D.W., 1990. Chronic toxicity/carcinogenicity studies of sulphamethazine in Fischer 344/N rats: Two-generation exposure. Food and Chemical Toxicology 28, 157-167.

Liu, J., Fang, G., Zhang, Y., Zheng, W., Wang, S., 2009. Development of a chemiluminescent enzyme-linked immunosorbent assay for five sulfonamide residues in chicken muscle and pig muscle. Journal of the Science of Food and Agriculture 89, 80-87.

Mahmoudi, R., Gajarbeygi, P., Norian, R., Farhoudi, K., 2014. Choramphenicol, Sulfonamide and Tetracycline residues in cultured Rainbow trout meat (Oncorhynchus mykiss). Bulgarian J Vet Med 17, 147-152.

Malik, H.E.E., Omer, J.E., Elamin, K.M., 2013. Effect of Sulfonamides Residues on Egg Quality Traits. Int J Poultry Sci 12, 312-317.

Møller, A.P., Biard, C., Blount, J.D., Houston, D.C., Ninni, P., Saino, N., Surai, P.F., 2000. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? . Avian Poultry Biol Rev 11, 137-159.

Nordberg, J., Arnér, E.S.J., 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radical Biology and Medicine 31, 1287-1312.

Paget, G.E., Thorpe, E., 1964. A TERATOGENIC EFFECT OF A SULPHONAMIDE IN EXPERIMENTAL ANIMALS. British Journal of Pharmacology and Chemotherapy 23, 305-312.

Poirier, L.A., Doerge, D.R., Gaylor, D.W., Miller, M.A., Lorentzen, R.J., Casciano, D.A., Kadlubar, F.F., Schwetz, B.A., 1999. An FDA review of sulfamethazine toxicity. Regul Toxicol Pharmacol 30, 217-222.

Prescott, J.F., 2000. Antimicrobials therapy in veterinary medicine, Blackwell, Ames, Iowa, USA.

Sadighara, P., Jahed Khaniki, G., Baseri, E., Dehghani, M.H., Barin, A., Mazaheri Nezhad Fard, R., 2013. Effect of Bisphenol A on the Quality Characteristics of Meat in a Chicken Embryo Model. Sci Int 1, 375-378.

Savary-Auzeloux, I., Durand, D., Gruffat, D., Bauchart, D., Ortigues-Marty, I., 2008. Food restriction and refeeding in lambs influence muscle antioxidant status. Animal 2, 738-745.

Sayrafi, R., Golshahi, H., Araghi, A., Seifi, S., 2015. Histopathological evaluation of dose dependent sulfadiazine-associated nephrotoxicity and alteration on oxidative stress in chicken embryos. Zahedan J Res Med Sci in press.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Hawkins Byrne, D., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19, 669-675.

Wang, H., Xu, Y., Song, W., Zhao, Q., Zhang, X., Zeng, Q., Chen, H., Ding, L., Ren, N., 2011. Automatic sample preparation of sulfonamide antibiotic residues in chicken breast muscle by using dynamic microwave-assisted extraction coupled with solid-phase extraction. J Sep Sci 34, 2489-2497.

Zhang, W., Xiao, S., Ahn, D.U., 2013. Protein oxidation: basic principles and implications for meat quality. Crit Rev Food Sci Nutr 53, 1191-1201.