Isolation of lytic bacteriophages against pathogenic Escherichia coli strains in poultry in the northwest of Iran

Document Type : Original Articles

Author

Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran

Abstract

In this study, 90 internal organ samples of poultry with symptoms of colibacillosis were obtained from Maragheh poultry farms in East Azerbaijan, Iran. In total, 70 bacterial isolates were confirmed as Escherichia coli (E. coli) strains using standard biochemical tests, and antibiotic sensitivity was determined by the disk diffusion method. Antibiotics used in this study included ampicillin, penicillin, nitrofurantoin, tetracycline, amoxicillin, ciprofloxacin, nalidixic acid, and sulfamethoxazole (n=8). Ciprofloxacin showed the highest susceptibility, while the lowest susceptibility was observed with penicillin and amoxicillin. Among the bacterial isolates, 50% showed resistance to at least five antibiotics, and 10 isolates with multidrug resistance were selected for bacteriophage (phage) isolation against recent E. coli isolates using spot test and double-layer agar overlay technique. In addition, water samples for phage isolation were provided from rivers, poultry farm sewages, and an urban sewage treatment center. In total, eight phages were successfully isolated from the urban sewage treatment center (total: 10). After enrichment, purification and titration, phages were further concentrated by polyethylene glycol precipitation. Lowest and highest bacteriophage titers were determined to be 1.05×106 and 1.9×109 PFU/ml, respectively. Host range of the isolated phages was assayed by spot testing, and antibacterial effects against four E. coli isolates were observed in one of the isolated phage suspensions, which was introduced as the most potentiated agent for phage therapy. In the morphological analysis of the selected phage using an electron microscope, we observed a hexagonal head with a diameter of 95 nm and contractile tail length of 90 nm, which indicated its similarity to the Myoviridae family. In conclusion, results of this study showed that bacteriophages could be appropriate alternatives to combat pathogenic E. coli strains with antibiotic resistance in poultry. Considering the changeable antibacterial effects of bacteriophages against different isolates of extraintestinal avian pathogenic E. coli, it is suggested that future investigations be conducted regarding the efficacy of lytic phages against different bacterial strains for the effective control of the associated infections in this region of Iran.

Keywords


Article Title [French]

Isolation des bactériophages lytiquesagissant contre les souches pathogènes d’Escherichia coli chez les volailles du nord-ouest de l’Iran

Abstract [French]

Dans cette étude, 90 prélèvements d’organes internes de volailles montrant des symptômes de colibacillose ont été obtenus des exploitations avicoles de la ville de Maragheh, située dans l’Est Azerbaïdjan (Iran). Au total, 70 isolats bactériens ont été identifiés comme étant des souches d’Escherichia coli (E. coli) par des tests biochimiques standard. La sensibilité aux antibiotiques des isolats a été ensuite déterminée par la méthode de diffusion sur disque. Les antibiotiques utilisés étaient l’ampicilline, la pénicilline, la nitrofurantoine, la tétracycline, l’amoxicilline, la ciprofloxacine, l’acide nalidixique et le sulfaméthoxazole (n=8). Les isolats étudiés montraient une susceptibilité plus importante vis-à-vis de la ciprofloxacine alors que le penicilline et le amoxicilline représentaient lesdeux antibiotiques les moins performants. Parmi les isolats bactériens, 50% étaient résistants à au moins 5 antibiotiques. Dix isolats multi-résistants ont été sélectionnés pour l’isolation des bactériophages par le biais de test ponctuel (spot test) et par la méthode de double couche de gélose de recouvrement (double-layer agar overlay). Les échantillons d’eau utilisés comme sources de bactériophages provenaient des rivières, des eaux usées d’exploitations avicoles et d’une station d’épuration urbaine. Au total, 8 phages ont été isolés à partir des échantillons récoltés dans la station d’épuration urbaine. Après enrichissement, purification et titration, les phages ont été concentrés davantage par précipitation au polyéthylène glycol. Les titres les plus bas et les plus élevés de bactériophages étaient respectivement de 1.05×106 et 1.9×109 PFU/ml. La spécificité d’hôtes a été déterminée par test ponctuel et a révélé une activité antibactérienne contre 4 isolats d’E. colidans l’une des suspensions de phages analysées, démontrant, de ce fait, l’intérêt thérapeutique de cette échantillon. Nos observations morphologiques par microscopie électronique montraient que le phage d’intérêt exhibait une tête hexagonale de 95 nm de diamètre et une queue contractile d’un diamètre de 90 nm, similaire à la famille des Myoviridae. En conclusion, ces résultats montrent que les bactériophages constituent une alternative thérapeutique appropriée pour combattre les souches pathogènes multi- résistantes d’E. colichez les volailles. Etant donnée la variabilité de l’effet antibactérien des bactériophages selon les différents isolats extra-intestinaux aviaires des souches pathogènes d’E. colianalysés, des études supplémentaires sur l’efficacité des phages lytiques contre différentes souches bactériennes pathogènes provenant d’autres régions d’Iran sont nécessaires et pourraient contribuer à un control plus efficace des infections associées.

Keywords [French]

  • Bactériophage
  • Colibacillose
  • Résistance antibiotique
  • Escherichia coli
  • Volaille
Adams, M.H., 1959. Bacteriophages, Interscience Publishers, New York.
Ahmadpour, S., Mardani, K., Tukmechi, A., 2016. Culture and molecular characterization of phages isolated from rainbow trout farms and sewage treatment plants and investigation of their effects on Yersinia ruckeri. Iranian J Fishe Sci 15, 267-280.
Atterbury, R.J., Van Bergen, M.A., Ortiz, F., Lovell, M.A., Harris, J.A., De Boer, A., Wagenaar, J.A., Allen, V.M., Barrow, P.A., 2007. Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Appl Environ Microbiol 73, 4543-4549.
Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36.
Biswas, B., Adhya, S., Washart, P., Paul, B., Trostel, A.N., Powell, B., Carlton, R., Merril, C.R., 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70, 204-210.
Chang, H.C., Chen, C.R., Lin, J.W., Shen, G.H., Chang, K.M., Tseng, Y.H., Weng, S.F., 2005. Isolation and characterization of novel giant Stenotrophomonas maltophilia phage phiSMA5. Appl Environ Microbiol 71, 1387-1393.
Chibani-Chennoufi, S., Sidoti, J., Bruttin, A., Dillmann, M.-L., Kutter, E., Qadri, F., Sarker, S.A., Brüssow, H., 2004. Isolation of Escherichia coli Bacteriophages from the Stool of Pediatric Diarrhea Patients in Bangladesh. J of Bacteriology 186, 8287-8294.
Clark, J.R., March, J.B., 2006. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24, 212-218.
Cooke, E.M., Breaden, A., Shooter, R.A., O'Farrell, S., 1971. Antibiotic sensitivity of escherichia coli isolated from animals, food, hospital patients, and normal people. The Lancet 298, 8-10.
Dabrowska, K., Opolski, A., Wietrzyk, J., Switala-Jelen, K., Godlewska, J., Boratynski, J., Syper, D., Weber-Dabrowska, B., Gorski, A., 2004. Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Res 24, 3991-3995.
Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antao, E.M., Laturnus, C., Diehl, I., Glodde, S., Homeier, T., Bohnke, U., Steinruck, H., Philipp, H.C., Wieler, L.H., 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297, 163-176.
Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., Yamada, T., 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77, 4155-4162.
Goodridge, L., Abedon, S.T., 2003. Bacteriophage Biocontrol and Bioprocessing: Application of Phage Therapy to Industry. SIM News 53.
Hawkins, C., Harper, D., Burch, D., Anggard, E., Soothill, J., 2010. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 146, 309-313.
Hendrix, R.W., 2003. Bacteriophage genomics. Curr Opin Microbiol 6, 506-511.
Housby, J.N., Mann, N.H., 2009. Phage therapy. Drug Discov Today 14, 536-540.
Hudson, B.H., Frederick, J.P., Drake, L.Y., Megosh, L.C., Irving, R.P., York, J.D., 2013. Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci U S A 110, 5040-5045.
Huff, W.E., Huff, G.R., Rath, N.C., Balog, J.M., Donoghue, A.M., 2002a. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci 81, 1486-1491.
Huff, W.E., Huff, G.R., Rath, N.C., Balog, J.M., Donoghue, A.M., 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult Sci 84, 655-659.
Huff, W.E., Huff, G.R., Rath, N.C., Balog, J.M., Xie, H., Moore, P.A., Jr., Donoghue, A.M., 2002b. Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult Sci 81, 437-441.
Jassim, S.A., Abdulamir, A.S., Abu Bakar, F., 2012. Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms. World J Microbiol Biotechnol 28, 47-60.
Jassim, S.A., Limoges, R.G., 2013. Impact of external forces on cyanophage-host interactions in aquatic ecosystems. World J Microbiol Biotechnol 29, 1751-1762.
Jun, J.W., Kim, J.H., Shin, S.P., Han, J.E., Chai, J.Y., Park, S.C., 2013. Characterization and complete genome sequence of the Shigella bacteriophage pSf-1. Res Microbiol 164, 979-986.
Karamoddini, M.K., Fazli-Bazzaz, B.S., Emamipour, F., Ghannad, M.S., Jahanshahi, A.R., Saed, N., Sahebkar, A., 2011. Antibacterial efficacy of lytic bacteriophages against antibiotic-resistant Klebsiella species. Scientific World  J 11, 1332-1340.
Kittler, S., Fischer, S., Abdulmawjood, A., Glunder, G., Klein, G., 2013. Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Appl Environ Microbiol 79, 7525-7533.
Krylov, V., Shaburova, O., Krylov, S., Pleteneva, E., 2013. A genetic approach to the development of new therapeutic phages to fight pseudomonas aeruginosa in wound infections. Viruses 5, 15-53.
Kudva, I.T., Jelacic, S., Tarr, P.I., Youderian, P., Hovde, C.J., 1999. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol 65, 3767-3773.
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., Abedon, S.T., 2010. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11, 69-86.
Lang, L.H., 2006. FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131, 1370.
Lau, G.L., Sieo, C.C., Tan, W.S., Hair-Bejo, M., Jalila, A., Ho, Y.W., 2010. Efficacy of a bacteriophage isolated from chickens as a therapeutic agent for colibacillosis in broiler chickens. Poult Sci 89, 2589-2596.
Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H., Greko, C., So, A.D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A.Q., Qamar, F.N., Mir, F., Kariuki, S., Bhutta, Z.A., Coates, A., Bergstrom, R., Wright, G.D., Brown, E.D., Cars, O., 2013. Antibiotic resistance; the need for global solutions. Lancet Infectious Diseases 13, 1057-1098.
Mankiewicz, E., Kurti, V., Adomonis, H., 1974. The effect of mycobacteriophage particles on cell-mediated immune reactions. Can J Microbiol 20, 1209-1218.
Matinkhoo, S., Lynch, K.H., Dennis, J.J., Finlay, W.H., Vehring, R., 2011. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci 100, 5197-5205.
Merril, C.R., Scholl, D., Adhya, S.L., 2003. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2, 489-497.
Oliveira, A., Sereno, R., Azeredo, J., 2010. In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146, 303-308.
Owens, J., Barton, M.D., Heuzenroeder, M.W., 2013. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet Microbiol 162, 144-150.
Quinn, P.J., Carter, M.E., Markey, B.K., Cartel, G.R., 1994. Clinical Veterinary Microbiology, Mosby-Year book Europe Limited, Wolfe publishing Ltd. London, England.
Roy, P., Purushothaman, V., Koteeswaran, A., Dhillon, A.S., 2006. Isolation, Characterization, and Antimicrobial Drug Resistance Pattern of Escherichia coli Isolated from Japanese Quail and their Environment. The J of Applied Poultry Research 15, 442-446.
Sulakvelidze, A., Alavidze, Z., Morris, J.G., Jr., 2001.

























 Bacteriophage therapy. Antimicrob Agents Chemother 45, 649-659.
Tsonos, J., Oosterik, L.H., Tuntufye, H.N., Klumpp, J., Butaye, P., De Greve, H., Hernalsteens, J.P., Lavigne, R., Goddeeris, B.M., 2014. A cocktail of in vitro efficient phages is not a guarantee for in vivo therapeutic results against avian colibacillosis. Vet Microbiol 171, 470-479.
van den Bogaard, A.E., London, N., Driessen, C., Stobberingh, E.E., 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 47, 763-771.
Wright, A., Hawkins, C.H., Anggard, E.E., Harper, D.R., 2009. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34, 349-357.
Zhao, S., Maurer, J.J., Hubert, S., De Villena, J.F., McDermott, P.F., Meng, J., Ayers, S., English, L., White, D.G., 2005. Antimicrobial susceptibility and molecular characterization of avian pathogenic Escherichia coli isolates. Vet Microbiol 107, 215-224.