In vitro study of drug-protein interaction using electronic absorption, fluorescence, and circular dichroism spectroscopy

Document Type: Original Articles

Authors

1 Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran

2 Department of Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran

Abstract

In the near future, design of a new generation of drugs targeting proteins will be required. Considering the complex bond between the drug and protein, the structure and stability of the target protein should be considered. So far, a series of in vitro investigations have been conducted with the aim of predicting drug-biological medium interactions. In these studies, use of spectroscopic methods, such as electronic absorption, fluorescence, and circular dichroism spectroscopy, which are briefly discussed in the present study, has been highlighted. The binding affinity of drug(s) to protein(s) and their binding mechanism(s) can be clearly determined by these methods, which reveal reactions in biological systems at low concentrations under physiological conditions. Ultraviolet-visible spectroscopy can be used as an accessible tool to measure slight changes in protein structure. Moreover, fluorescence spectroscopy provides tertiary structural information. On the other hand, circular dichroism spectroscopy in far-ultraviolet regions (180–260 nm) yields suitable information about different secondary structures of proteins. Conformational changes of proteins due to alterations such as physicochemical conditions, in vitro chemical modifications, and drug binding could impact ultraviolet-visible absorption, circular dichroism, and fluorescence spectra. Therefore, the study of changed spectra could reveal the structure-activity relationship of drug compounds and target proteins. In the present study, a short description of the mentioned methods, along with some related equations which are usually used to analyze and discuss the preliminary data, is presented. Overall, the obtained results could facilitate the development of biological and pharmaceutical potentials of drugs in the future.

Keywords

Main Subjects


Article Title [French]

Etude in Vitro de l’interaction médicament-protéine par absorption électronique, fluorescence et dichroïsme circulaire

Abstract [French]

Dans un futur proche, la conception d’une nouvelle génération de médicaments ciblant des protéines sera nécessaire. Etant donnée la complexité des liaisons entre médicaments et protéines, la structure et la stabilité de la protéine cible doivent également être prises en compte. Jusqu’alors, une série d’études in vitro ont été menées dans le but de prédire les interactions potentielles entre médicament et milieu biologique. Dans cette étude, plusieurs méthodes spectroscopiques comme l’absorption électronique, la fluorescence et le dichroïsme circulaire ont été utilisées dans ce sens. Ces méthodes sont capables de révéler, dans des conditions physiologiques et dans de faibles concentrations, l’affinité des liaisons médicaments-protéines survenant dans des systèmes biologiques variés. De plus, la spectroscopie à l’ultraviolet visible représente une technique accessible pour mesurer de légers changements structurels dans les protéines d’intérêts. Des données concernant les structures secondaires et tertiaires des protéines ont été respectivement obtenues par spectroscopie à ultraviolet lointain (180–260 nm) et spectroscopie à fluorescence. Notre étude montre que les changements de conformation des protéines induites par des altérations physicochimiques, des modifications chimiques in vitro ou des liaisons avec des composés médicamenteux peuvent avoir un impact sur les spectres obtenus par absorption à ultraviolet-visible, par dichroïsme circulaire ou par fluorescence. Par conséquent, l’étude des spectres modifiés peut révéler la relation structure-activité entre composés médicamenteux et protéines cibles. Les différentes méthodes de spectrométries utilisées ont été brièvement décrites et les équations habituellement utilisées pour analyser et développer les résultats préliminaires sont présentées. Dans leur globalité, les résultats obtenus peuvent à l’avenir faciliter le développement de produits biologiques et pharmaceutiques.

Keywords [French]

  • Etude in vitro
  • Interaction médicament-protéine
  • Structure des protéines
  • Spectroscopie
  • Absorption électronique
  • Fluorescence
  • Dichroïsme circulaire
Ahmad, B., Parveen, S., Khan, R.H., 2006. Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromolecules 7, 1350-1356.

Amin, F., Bano, B., 2014. Antidepressant Fluoxetine Modulates the In Vitro Inhibitory Activity of Buffalo Brain Cystatin: A Thermodynamic Study Using UV and Fluorescence Techniques. Biotechnology Research International 2014, 7.

Attar, F., Aminifar, M., 2014. Spectroscopic techniques used for enzyme evaluation in food industry. ICNFS 3rd International Conference on Nutrition & Food Science, Denmark, Copenhagen.

Attar, F., Khavari-Nejad, S., Keyhani, J., Keyhani, E., 2009. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis. Ann N Y Acad Sci 1171, 292-299.

Bandyopadhyay, D., Granados, J.C., Short, J.D., Banik, B.K., 2012. Polycyclic aromatic compounds as anticancer agents: Evaluation of synthesis and in vitro cytotoxicity. Oncol Lett 3, 45-49.

Bertucci, C., Pistolozzi, M., De Simone, A., 2010. Circular dichroism in drug discovery and development: an abridged review. Anal Bioanal Chem 398, 155-166.

Colis, L., Peltonen, K., Sirajuddin, P., Liu, H., Sanders, S., Ernst, G., Barrow, J.C., Laiho, M., 2014. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response. Oncotarget 5, 4361-4369.

Cui, Y., Hao, E., Hui, G., Guo, W., Cui, F., 2013. Investigations on the interactions of diclofenac sodium with HSA and ctDNA using molecular modeling and multispectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc 110, 92-99.

Emel’yanenko, V.I., Burshtein, É.A., 1998. Analytical description of the fluorescence spectra of aromatic amino acids and proteins. Journal of Applied Spectroscopy 65, 372-378.

Faridbod, F., Ganjali, M.R., Larijani, B., Riahi, S., Saboury, A.A., Hosseini, M., Norouzi, P., Pillip, C., 2011. Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc 78, 96-101.

Gong, A., Zhu, X., Hu, Y., Yu, S., 2007. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application. Talanta 73, 668-673.

Hadizadeh, M., Keyhani, E., Keyhani, J., Khodadadi, C., 2009. Functional and structural alterations induced by copper in xanthine oxidase. Acta Biochimica et Biophysica Sinica 41, 603-617.

Ideker, T., Galitski, T., Hood, L., 2001. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2, 343-372.

Jacob, L., Vert, J.P., 2008. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24, 2149-2156.

Kandagal, P.B., Ashoka, S., Seetharamappa, J., Shaikh, S.M., Jadegoud, Y., Ijare, O.B., 2006. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal 41, 393-399.

Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L., Edwards, D.D., Shoichet, B.K., Roth, B.L., 2009. Predicting new molecular targets for known drugs. Nature 462, 175-181.

Kelly, S.M., Price, N.C., 1997. The application of circular dichroism to studies of protein folding and unfolding. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1338, 161-185.

Keyhani, E., Khavari-Nejad, S., Keyhani, J., Attar, F., 2009. Acriflavine-mediated apoptosis and necrosis in yeast Candida utilis. Ann N Y Acad Sci 1171, 284-291.

Keyhani, J., Keyhani, E., Khavari-Nejad, S., Attar, F., Azzari, F., 2005. Combined effect of doxorubicin and metal on the yeast candida utilis. BioMicroWorld 1st International Conference, Spain, Badajoz.

Khavari-Nejad, S., Keyhani, E., Keyhani, J., 2007. Inhibition by doxorubicine of anti-ROS enzymes superoxide dismutase and catalase in Salmonella typhymurium. BioMicroWorld 2st International Conference, Spain, Seville.

Lerman, L.S., 1961. Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology 3, 18-IN14.

Li, D., Ji, B., Jin, J., 2008. Spectrophotometric studies on the binding of Vitamin C to lysozyme and bovine liver catalase. Journal of Luminescence 128, 1399-1406.

Lin, C., Mathad, R.I., Zhang, Z., Sidell, N., Yang, D., 2014. Solution structure of a 2:1 complex of anticancer drug XR5944 with TFF1 estrogen response element: insights into DNA recognition by a bis-intercalator. Nucleic Acids Res 42, 6012-6024.

Manavalan, P., Johnson, W.C., 1987. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Analytical Biochemistry 167, 76-85.

Marverti, G., Cusumano, M., Ligabue, A., Di Pietro, M.L., Vainiglia, P.A., Ferrari, A., Bergomi, M., Moruzzi, M.S., Frassineti, C., 2008. Studies on the anti-proliferative effects of novel DNA-intercalating bipyridyl-thiourea-Pt(II) complexes against cisplatin-sensitive and -resistant human ovarian cancer cells. J Inorg Biochem 102, 699-712.

Mehrabi, M., Ghobadi, S., Khodarahmi, R., 2009. Spectroscopic study on the interaction of celecoxib with human carbonic anhydrase II: thermodynamic characterization of the binding process. J Photochem Photobiol B 97, 161-168.

Minai-Tehrani, D., Fooladi, N., Minoui, S., Sobhani-Damavandifar, Z., Aavani, T., Heydarzadeh, S., Attar, F., Ghaffari, M., Nazem, H., 2010. Structural changes and inhibition of sucrase after binding of scopolamine. Eur J Pharmacol 635, 23-26.

Miskovic, K., Bujak, M., Baus Loncar, M., Glavas-Obrovac, L., 2013. Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs. Arh Hig Rada Toksikol 64, 593-602.

Mizutani, S., Pauwels, E., Stoven, V., Goto, S., Yamanishi, Y., 2012. Relating drug-protein interaction network with drug side effects. Bioinformatics 28, i522-i528.

Naik, K.M., Nandibewoor, S.T., 2013. Spectral characterization of the binding and conformational changes of bovine serum albumin upon interaction with an anti-fungal drug, methylparaben. Spectrochim Acta A Mol Biomol Spectrosc 105, 418-423.

Naik, P.N., Chimatadar, S.A., Nandibewoor, S.T., 2009. Study on the interaction between antibacterial drug and bovine serum albumin: a spectroscopic approach. Spectrochim Acta A Mol Biomol Spectrosc 73, 841-845.

Oravcova´, J., Bo¨hs, B., Lindner, W., 1996. Drug-protein binding studies new trends in analytical and experimental methodology. Journal of Chromatography B: Biomedical Sciences and Applications 677, 1-28.

Parikh, H.H., McElwain, K., Balasubramanian, V., Leung, W., Wong, D., Morris, M.E., Ramanathan, M., 2000. A rapid spectrofluorimetric technique for determining drug-serum protein binding suitable for high-throughput screening. Pharm Res 17, 632-637.

Rahman, M.H., Maruyama, T., Okada, T., Imai, T., Otagiri, M., 1993. Study of interaction of carprofen and its enantiomers with human serum albumin—II. Biochemical Pharmacology 46, 1733-1740.

Ranjbar, B., Gill, P., 2009. Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem Biol Drug Des 74, 101-120.

Rezaei-Tavirani, M., Tadayon, R., Mortazavi, S.A., Medhet, A., Namaki, S., Kalantari, S., Noshinfar, E., 2012. Fluoxetine competes with cortisol for binding to human serum albumin. Iran J Pharm Res 11, 325-330.

Sevilla, P., Rivas, J.M., Garcia-Blanco, F., Garcia-Ramos, J.V., Sanchez-Cortes, S., 2007. Identification of the antitumoral drug emodin binding sites in bovine serum albumin by spectroscopic methods. Biochim Biophys Acta 1774, 1359-1369.

Shahabadi, N., Hadidi, S., 2014. Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 122, 100-106.

Shih, J.C., Rho, J., 1977. The specific interaction between LSD and serotonin-binding protein. Res Commun Chem Pathol Pharmacol 16, 637-647.

Sudharsan Raj, A., Heddle, J.A., 1980. Simultaneous detection of chromosomal aberrations and sister-chromatid exchanges. Mutation Research/Genetic Toxicology 78, 253-260.

Tayefi-Nasrabadi, H., Keyhani, E., Keyhani, J., 2006. Conformational changes and activity alterations induced by nickel ion in horseradish peroxidase. Biochimie 88, 1183-1197.

Vahedian-Movahed, H., Saberi, M.R., Chamani, J., 2011. Comparison of binding interactions of lomefloxacin to serum albumin and serum transferrin by resonance light scattering and fluorescence quenching methods. J Biomol Struct Dyn 28, 483-502.

Vishkaee, T.S., Mohajerani, N., Nafisi, S., 2013. A comparative study of the interaction of Tamiflu and Oseltamivir carboxylate with bovine serum albumin. J Photochem Photobiol B 119, 65-70.

Vuignier, K., Schappler, J., Veuthey, J.L., Carrupt, P.A., Martel, S., 2010. Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem 398, 53-66.

Wang, Y.Q., Zhang, H.M., Zhang, G.C., Tao, W.H., Fei, Z.H., Liu, Z.T., 2007. Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43, 1869-1875.

Wilson, W.R., Harris, N.M., Ferguson, L.R., 1984. Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells. Cancer Res 44, 4420-4431.

Wilting, J., van der Giesen, W.F., Janssen, L.H., Weideman, M.M., Otagiri, M., Perrin, J.H., 1980. The effect of albumin conformation on the binding of warfarin to human serum albumin. The dependence of the binding of warfarin to human serum albumin on the hydrogen, calcium, and chloride ion concentrations as studied by circular dichroism, fluorescence, and equilibrium dialysis. J Biol Chem 255, 3032-3037.

Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M., 2008. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232-240.