Cloning and molecular characterization of Omp31 gene from Brucella melitensis Rev 1 strain

Document Type: Short Communication


Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran


Brucellosis, caused by the genus Brucella bacterium, is a well-known infection among domestic animals. Considering the serious economic and medical consequences of this infection, various preventive efforts have been made through using recombinant vaccines, based on outer membrane protein (OMP) antigens of Brucella species. The objective of the present study was to clone, analyze the sequence, and predict the epitopes of Omp31 gene as a major B. melitensis antigen. The full-length open reading frame (ORF) for this gene was amplified by specific primers and cloned into the pTZ57R/T vector. The gene sequence of B. melitensis Rev 1 strain was submitted to NCBI database. The results of phylogenetic analysis showed that Omp31 is almost similar in different Brucella species. Online prediction software programs were also used to predict B- and T-cell epitopes, secondary and tertiary structures, antigenicity, and enzymatic degradation sites. The bioinformatic tools in the current study were confirmed by the results of three different experimental epitope prediction studies. Bioinformatic analysis identified one T-cell and three B-cell epitopes for Omp31 antigen. Finally, based on the antigenicity and proteosome recognition sites, common B- and T-cell epitopes were predicted for Omp31 (amino acids 191-204). Bioinformatic analysis showed that these regions had proper epitope characterization and could be useful for recombinant vaccine development.


Main Subjects

Article Title [French]

Clonage et caractérisation moléculaire du gène Omp31 de la souche Rev 1 de Brucella melitensis

Abstract [French]

La brucellose, une infection causée par des bactéries du genre Brucella, est très répandue chez les animaux domestiques. Compte tenu des conséquences économiques et sanitaires de cette infection, des mesures de prévention variées ont été mises en place, comme notamment l’usage de vaccins recombinants à partir d’antigènes isolés des membranes cellulaires externes des espèces de Brucella. L’objectif de cette étude est le clonage, l’analyse et le séquençage du gène Omp31 ainsi que la prédiction des épitopes de l’antigène majeur de B. melitensis. Le cadre de lecture ouvert de pleine longueur (full-length open reading frame, ORF) du gène Omp31 a été amplifié grâce à l’utilisation d’amorces spécifiques et ensuite cloné dans le vecteur pTZ57R/T. La séquence du gène a été soumise à la base de données NCBI. Les résultats de nos analyses phylogénétiques montrent qu’Omp31 est pratiquement similaire dans toutes les espèces du genre Brucella. Des logiciels de simulation en ligne ont été également utilisés afin de prédire les séquences et l’emplacement des épitopes spécifiques aux cellules B et T, les structures secondaire et tertiaire de l’antigène ainsi que les sites probables de dégradation enzymatiques. Nos analyses bioinformatiques ont permis d’identifier un épitope de cellule T et trois épitopes de cellules B pour l’antigène Omp31. Enfin, à partir de la reconnaissance des sites antigéniques et protéasomiques, des épitopes reconnues communément par les cellules B et T ont été identifiés pour l’antigène Omp31 (acides aminés 191-204). Nos analyses bioinformatiques montrent que des régions spécifiques de l’antigène Omp31 exhibent des propriétés épitopiques et pourrait être utilisées pour le développement futur de vaccin recombinant.

Keywords [French]

  • Brucella melitensis
  • Omp31
  • Analyse bioinformatique

Azimi, L., Khoramabadi, N., Mohabati Mobarez, A., Aslz, E., Harzandi, N., R., M., 2012. Survey of Protection of Recombinant Cell Surface Protein 31kDa from Brucella melitensis in BALB/c Mice. Journal of Pure and Applied Microbiology 6, 69-73.

Berzofsky, J.A., 1985. Intrinsic and extrinsic factors in protein antigenic structure. Science 229 932–940.

Buus, S., Lauemøller, S.L., P., W., 2003. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue Antigens 62 378-384.

Cassataro, J., Estein, S.M., Pasquevich, K.A., Velikovsky, C.A., de la Barrera, S., Bowden, R., Fossati, C.A., Giambartolomei, G.H., 2005. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infection and immunity 73, 8079-8088.

Chen, P., Rayner, S., Hu, K.H., 2011. Advances of bioinformatics tools applied in virus epitopes prediction. Virologica Sinica 26, 1-7.

Cutler, S.J., Whatmore, A.M., Commander, N.J., 2005. Brucellosis--new aspects of an old disease. Journal of applied microbiology 98, 1270-1281.

Delpino, M.V., Estein, S.M., Fossati, C.A., Baldi, P.C., Cassataro, J., 2007. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine 25, 6721-6729.

Donnes, P., Elofsson, A., 2002. Prediction of MHC class I binding peptides, using SVMHC. BMC bioinformatics 3, 25.

Geourjon, C., Deleage, G., 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer applications in the biosciences : CABIOS 11, 681-684.

Ghasemi, A., Salari, M.H., Zarnani, A.H., Pourmand, M.R., Ahmadi, H., Mirshafiey, A., Jeddi-Tehrani, M., 2013. Immune reactivity of Brucella melitensis-vaccinated rabbit serum with recombinant Omp31 and DnaK proteins. Iranian journal of microbiology 5, 19-23.

Gupta, V.K., Vohra, J., Kumari, R., Gururaj, K., Vihan, V.S., 2012. Identification of Brucella isolated from goats using Pst I sitepolymorphism at Omp2 gene loci. Indian Journal of Animal Sciences 82, 240–243.

Hopp, T.P., Woods, K.R., 1981. Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America 78, 3824-3828.

Karthik, K., Rathore, R., Verma, A.K., Tiwari, R., Dhama, K., 2013. Brucellosis – still it stings. Livestock Technology 2, 8-10.

Li, Y., Liu, X., Zhu, Y., Zhou, X., Cao, C., Hu, X., Ma, H., Wen, H., Ma, X., Ding, J.B., 2013. Bioinformatic prediction of epitopes in the Emy162 antigen of. Experimental and therapeutic medicine 6, 335-340.

Noguchi, H., Kato, R., Hanai, T., Matsubara, Y., Honda, H., Brusic, V., Kobayashi, T., 2002. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. Journal of bioscience and bioengineering 94, 264-270.

Pappas, G., Papadimitriou, P., Christou, L., Akritidis, N., 2006. Future trends in human brucellosis treatment. Expert opinion on investigational drugs 15, 1141-1149.

Ponomarenko, J.V., van Regenmortel, M.H.V., 2009. B-cell epitope prediction, John Wiley & Sons, Inc.

Rajagunalan, S., Kumari, G., Gupta, S.K., Kumar, A., Agarwal, R.K., Rawool, D.B., Singh, D.K., 2013. Molecular characterization of Omp31 gene of Indian field Isolates of Brucella melitensis. Indian Journal of Animal Sciences 83 673–677.

Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press.

Sekhavati, M.H., Majidzadeh Heravi, R., Tahmoorespur, M., Yousefi, S., Abbassi-Daloii, T., Akbari, R., 2015. Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen. Iranian Journal of Basic Medical Sciences 18, 499-505.

Simon, G.G., Hu, Y., Khan, A.M., Zhou, J., Salmon, J., Chikhlikar, P.R., Jung, K.O., Marques, E.T., August, J.T., 2010. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice. PloS one 5, e8574.

Steere, A.C., Drouin, E.E., Glickstein, L.J., 2011. Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 52 Suppl 3, s259-265.

Toes, R.E., Nussbaum, A.K., Degermann, S., Schirle, M., Emmerich, N.P., Kraft, M., Laplace, C., Zwinderman, A., Dick, T.P., Muller, J., Schonfisch, B., Schmid, C., Fehling, H.J., Stevanovic, S., Rammensee, H.G., Schild, H., 2001. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. The Journal of experimental medicine 194, 1-12.

Vahedi, F., Talebi, A.F., Ghorbani, E., Behroozikhah, A.M., Shahriari Ahmadi, F., Mahmoudi, M., 2011. Isolation, cloning and expression of the Brucella melitensis Omp31 gene. Iranian Journal of Veterinary Research 12, 156-162.

Vizcaino, N., Cloeckaert, A., Zygmunt, M.S., Dubray, G., 1996. Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infection and immunity 64, 3744-3751.

Vizcaino, N., Zygmunt, M.S., Verger, J.M., Grayon, M., Cloeckaert, A., 1997. Localization and characterization of a specific linear epitope of the Brucella DnaK protein. FEMS microbiology letters 154, 117-122.

Wang, W., Wu, J., Qiao, J., Weng, Y., Zhang, H., Liao, Q., Qiu, J., Chen, C., Allain, J.P., Li, C., 2014. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine 32, 825-833.

Wass, M.N., Sternberg, M.J., 2009. Prediction of ligand binding sites using homologous structures and conservation at CASP8. Proteins 77 Suppl 9, 147-151.

Yousefi, S., Tahmoorespur, M., Sekhavati, M.H., 2015. B and T‐cell epitope prediction of the OMP25 antigen for developing Brucella melitensis vaccines for sheep. Iranian Journal of Applied Animal Science 5, 629-638.

Zhang, W., Liu, J., Zhao, M., Li, Q., 2012. Predicting linear B-cell epitopes by using sequence-derived structural and physicochemical features. International journal of data mining and bioinformatics 6, 557-569.