Evaluation of silver residues accumulation in tissues of Broilers treated with nanosilver using MNSR (A Clinical Trial)

Document Type: Short Communication

Authors

1 Agricultural Research Organization, Amir Hamzeh City, Isfahan, Iran

2 Faculty of Biological sciences, Biotechnology Research and Develpment Center, Tarbiat Modares University

Abstract

Nanoparticles of silver were treaeted as clinical trials in some broiler farms for its disinfecting characters in 4 broiler farms during growing period. The nanosilver were used orally and inhalatory in amount of 2 -4 ppm and 40 ppm respectively. Some samples of Breast muscle, Femora muscle, Heart, Gizzard, Liver, Skin, Spleen, Lung, Kidney and Cloacal feces were collected randomly in slaughterhouse. The silver nanoparticles residues accumulation in samples were examined by miniature neutron source reactor (MNSR) with a high specificity and sensitivity in ppb levels. Regarding to the results the silver residues were detectable in all the samples (>131ppb),  The average of residues in ppb level in examined   samples were as 131(a) for Spleens, 132(a) for Gizzards, 144(a) for Hearts, 147(a) for Kidneys, 160(a) for Lungs, 168(a) (a)for Breast muscles, 172(a) for Femora  muscles, 185(a) for Livers, 194(a) for Skins and 557(b) for cloacal Feces. Comparison of averages among treatments by ANOVA (Duncan) (p<0.05), showed that cloacal feces (557 ppb) has significant different with other treatments (different subscripted letter-b). Regarding to the results, nanosilver usages were limited just for surfaces of the farms by Iranian Veterinary Organization for public health opinions.

Keywords

Main Subjects


Article Title [French]

Evaluation par MNSR de l’accumulation d’argent résiduel dans les tissus de poulets traités avec des nanoparticules d’argent (un essai clinique)

Abstract [French]

Des nanoparticules d’argent ont été utilisées pour leurs propriétés désinfectantes lors d’un essai clinique sur 4 poulets fermiers en période de croissance. Les nanoparticules ont été administrées par voie orale (2-4 ppm) et par inhalation (40 ppm). Des échantillons ont été prélevés de façon aléatoire à partir de muscles de poitrines et fémoraux, du cœur, du gésier,
du foie, de la peau, de la rate, du poumon, des reins et des excréments cloacaux dans un abattoir. L’accumulation de nanoparticules d’argent a été examinée dans chacun des prélèvements par MNSR (miniature neutron source reactor) montrant une forte spécificité et sensibilité à l’échelle des pbb. Selon nos résultats, de l’argent résiduel était présent dans tous les échantillons analysés (>131ppb). Les concentrations moyennes détectées étaient de 131(a) dans les rates, 132(a) dans les gésiers, 144(a) pour les cœurs, 147(a) pour les reins, 160(a) dans les poumons, 168(a) pour les muscles de la poitrine, 172(a) pour les muscles fémoraux, 185(a) dans les foies, 194(a) pour la peau et enfin 557(b) pour excréments cloacaux. Ces concentrations moyennes ont été ensuite comparées par ANOVA (Duncan) (p<0.05), et montrent un taux d’argent résiduel significativement plus élevé au niveau des excréments cloacaux (marqué ici par l’indice b). A la lumière de ces résultats et pour préserver la santé publique, l’usage des nanoparticules d’argent a été limité à la surface des élevages par l’organisation vétérinaire iranienne.

Keywords [French]

  • Nanoparticules d’argent
  • Poulet
  • Evaluation
  • Argent résiduel
  • MNSR

Bidgoli, S.A., Mahdavi, M., Rezayat, S.M., Korani, M., Amani, A., Ziarati, P., 2013. Toxicity assessment of nanosilver wound dressing in Wistar rat. Acta medica Iranica 51, 203-208.

Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233-1242.

Dastmalchi, F., Rahmanya, J., 2009. The inhibitory effect of silver nanoparticles on the bacterial fish pathogens,  and Streptococcus iniae Lactococcus garvieae Yersinia ruckeri Aeromonas hydrophila. Int J Vet Res 3, 137-142.

Donaldson, K., Tran, L., Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., MacNee, W., Stone, V., 2005. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2, 10.

Hunt, G., Mehta, M.D., 2006. Nanotechnology: Risk, Ethics and Law, Earthscan.

Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., et al., 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine : Nnanotech, Biol, Med 3, 95-101.

Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological sciences: J Toxicol 77, 126-134.

Lansdown, A.B., 2006. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33, 17-34.

Maillard, J.Y., Hartemann, P., 2013. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39, 373-383.

Monteiro-Riviere, N.A., Tran, C.L., 2007. Nanotoxicology: Characterization, Dosing and Health Effects, CRC Press.

Oberdorster, E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Pers 112, 1058-1062.

Ping, G., Huimin, L., Xiaoxiao, H., Kemin, W., Jianbing, H., Weihong, T., Shouchun, Z., Xiaohai, Y., 2007. Preparation and antibacterial activity of Fe3O4, Ag nanoparticles. Nanotechnology 18, 285604.

Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G., Schiffmann, D., 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Pers 110, 797-800.

Rai, M., Yadav, A., Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27, 76-83.

Sarsar, V.K., K., S., M., K.S., 2014. Nanosilver: Potent antimicrobial agent and its biosynthesis. Afr J Biotech 13, 546-554.

Uchino, T., Tokunaga, H., Ando, M., Utsumi, H., 2002. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO(2)-UVA treatment. Toxicol in vitro 16, 629-635.

 

Bidgoli, S.A., Mahdavi, M., Rezayat, S.M., Korani, M., Amani, A., Ziarati, P., 2013. Toxicity assessment of nanosilver wound dressing in Wistar rat. Acta Med Iran 51, 203-208.

Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233-1242.

Dastmalchi, F., Rahmanya, J., 2009. The inhibitory effect of silver nanoparticles on the bacterial fish pathogens,  and Streptococcus iniae Lactococcus garvieae Yersinia ruckeri Aeromonas hydrophila. Int J Vet Res 3, 137-142.

Donaldson, K., Tran, L., Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., MacNee, W., Stone, V., 2005. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2, 10.

Hunt, G., Mehta, M.D., 2006. Nanotechnology: Risk, Ethics and Law, Earthscan.

Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H., 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 95-101.

Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77, 126-134.

Lansdown, A.B., 2006. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33, 17-34.

Maillard, J.Y., Hartemann, P., 2013. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39, 373-383.

Monteiro-Riviere, N.A., Tran, C.L., 2007. Nanotoxicology: Characterization, Dosing and Health Effects, CRC Press.

Oberdorster, E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112, 1058-1062.

 

Ping, G., Huimin, L., Xiaoxiao, H., Kemin, W., Jianbing, H., Weihong, T., Shouchun, Z., Xiaohai, Y., 2007. Preparation and antibacterial activity of Fe 3 O 4 @Ag nanoparticles. Nanotechnology 18, 285604.

Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G., Schiffmann, D., 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110, 797-800.

Rai, M., Yadav, A., Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27, 76-83.

Sarsar , V.K., K., S., M., K.S., 2014. Nanosilver: Potent antimicrobial agent and its biosynthesis. Afr J Biotech 13, 546-554.

Uchino, T., Tokunaga, H., Ando, M., Utsumi, H., 2002. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO(2)-UVA treatment. Toxicol In Vitro 16, 629-635.